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Introduction
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This book presupposes a reasonable knowledge of elementary calculus and
linear algebra. It is a working knowledge of the fundamentals that is actu-
ally required. The reader will, for example, frequently be called upon to use
the chain rule for differentiation, but its proof need not concern us.

Calculus deals mostly with real-valued functions of one or more variables,
linear algebra with functions (linear transformations) from one vector space
to another. We shall need functions of these and other types, so we give here
general definitions that cover all types.

A set S is a collection of objects that are called the elements of S. A set A
is a subset of S provided each element of A is also an element of S.

A function f from a set D to a set R is a rule that assigns to each element
x of D a unique element f(x) of R. The element f (x) is called the value of f
at x. The set D is called the domain of f ; the set R is sometimes called the
range of f. If we wish to emphasize the domain and range of a function f,
the notation f : D Æ R is used. Note that the function is denoted by a single
letter, say f, while f(x) is merely a value of f.

Many different terms are used for functions—mappings, transformations,
correspondences, operators, and so on. A function can be described in
various ways, the simplest case being an explicit formula such as

which we may also write as x Æ 3x2 + 1.
If both f1 and f2 are functions from D to R, then f1 = f2 means that 

f1(x) = f2(x) for all x in D. This is not a definition, but a logical consequence
of the definition of function.

Let f : D Æ R and g: E Æ S be functions. In general, the image of f is 
the subset of R consisting of all elements of the form f(x); it is usually
denoted by f(D). If this image happens to be a subset of the domain E of g,

f x x( ) = +3 12 ,
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it is possible to combine these two functions to get the composite function
g( f ): D Æ S. By definition, g( f ) is the function whose value at each element
x of D is the element g( f (x)) of S.

If f: D Æ R is a function and A is a subset of D, then the restriction of f
to A is the function f |A: A Æ R defined by the same rule as f, but applied
only to elements of A. This seems a rather minor change, but the function
f |A may have properties quite different from f itself.

Here are two vital properties that a function may possess. A function 
f : D Æ R is one-to-one provided that if x and y are any elements of D such
that x π y, then f(x) π f(y). A function f: D Æ R is onto (or carries D onto
R) provided that for every element y of R there is at least one element x of
D such that f(x) = y. In short, the image of f is the entire set R. For example,
consider the following functions, each of which has the real numbers as both
domain and range:

(1) The function x Æ x3 is both one-to-one and onto.
(2) The exponential function x Æ ex is one-to-one, but not onto.
(3) The function x Æ x3 + x2 is onto, but not one-to-one.
(4) The sine function x Æ sin x is neither one-to-one nor onto.

If a function f : D Æ R is both one-to-one and onto, then for each element
y of R there is one and only one element x such that f(x) = y. By defining 
f -1(y) = x for all x and y so related, we obtain a function f -1: R Æ D called
the inverse of f. Note that the function f -1 is also one-to-one and onto, and
that its inverse function is the original function f.

Here is a short list of the main notations used throughout the book, in
order of their appearance in Chapter 1:

p, q  . . . . . . . . . . . . . . . . . . . . . points (Section 1.1)
f, g  . . . . . . . . . . . . . . . . . . . . . real-valued functions (Section 1.1)
v, w  . . . . . . . . . . . . . . . . . . . . . tangent vectors (Section 1.2)
V, W  . . . . . . . . . . . . . . . . . . . . vector fields (Section 1.2)
a, b  . . . . . . . . . . . . . . . . . . . . . curves (Section 1.4)
f, y  . . . . . . . . . . . . . . . . . . . . . differential forms (Section 1.5)
F, G . . . . . . . . . . . . . . . . . . . . . mappings (Section 1.7)

In Chapter 1 we define these concepts for Euclidean 3-space. (Extension to
arbitrary dimensions is virtually automatic.) In Chapter 4 we show how these
concepts can be adapted to a surface.

A few references are given to the brief bibliography at the end of the book;
these are indicated by initials in square brackets.
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Calculus on Euclidean Space
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As mentioned in the Preface, the purpose of this initial chapter is to estab-
lish the mathematical language used throughout the book. Much of what we
do is simply a review of that part of elementary calculus dealing with differ-
entiation of functions of three variables and with curves in space. Our defi-
nitions have been formulated so that they will apply smoothly to the later
study of surfaces.

1.1 Euclidean Space

Three-dimensional space is often used in mathematics without being formally
defined. Looking at the corner of a room, one can picture the familiar process
by which rectangular coordinate axes are introduced and three numbers are
measured to describe the position of each point. A precise definition that
realizes this intuitive picture may be obtained by this device: instead of saying
that three numbers describe the position of a point, we define them to be a
point.

1.1 Definition Euclidean 3-space R3 is the set of all ordered triples of real
numbers. Such a triple p = ( p1, p2, p3) is called a point of R3.

In linear algebra, it is shown that R3 is, in a natural way, a vector space
over the real numbers. In fact, if p = ( p1, p2, p3) and q = (q1, q2, q3) are points
of R3, their sum is the point

p q+ = + + +( )p q p q p q1 1 2 2 3 3, , .



The scalar multiple of a point p = ( p1, p2, p3) by a number a is the point

It is easy to check that these two operations satisfy the axioms for a vector
space. The point 0 = (0, 0, 0) is called the origin of R3.

Differential calculus deals with another aspect of R3 starting with the
notion of differentiable real-valued functions on R3. We recall some 
fundamentals.

1.2 Definition Let x, y, and z be the real-valued functions on R3 such
that for each point p = ( p1, p2, p3)

These functions x, y, z are called the natural coordinate functions of R3. We
shall also use index notation for these functions, writing

Thus the value of the function xi on a point p is the number pi, and so we
have the identity p = ( p1, p2, p3) = (x1(p), x2(p), x3(p)) for each point p of R3.
Elementary calculus does not always make a sharp distinction between the
numbers p1, p2, p3 and the functions x1, x2, x3. Indeed the analogous distinc-
tion on the real line may seem pedantic, but for higher-dimensional spaces
such as R3, its absence leads to serious ambiguities. (Essentially the same dis-
tinction is being made when we denote a function on R3 by a single letter f,
reserving f (p) for its value at the point p.)

We assume that the reader is familiar with partial differentiation and its
basic properties, in particular the chain rule for differentiation of a compos-
ite function. We shall work mostly with first-order partial derivatives ∂f /∂x,
∂f /∂y, ∂f /∂z and second-order partial derivatives ∂2f /∂x2, ∂2f /∂x∂y, . . . In a
few situations, third- and even fourth-order derivatives may occur, but to
avoid worrying about exactly how many derivatives we can take in any given
context, we establish the following definition.

1.3 Definition A real-valued function f on R3 is differentiable (or infi-
nitely differentiable, or smooth, or of class C •) provided all partial derivatives
of f, of all orders, exist and are continuous.

Differentiable real-valued functions f and g may be added and multiplied
in a familiar way to yield functions that are again differentiable and real-

x x x y x z1 2 3= = =, , .

x p y p z pp p p( ) = ( ) = ( ) =1 2 3, , .

a ap ap app = ( )1 2 3, , .
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valued. We simply add and multiply their values at each point—the formu-
las read

The phrase “differentiable real-valued function” is unpleasantly long. Hence
we make the convention that unless the context indicates otherwise, “func-
tion” shall mean “real-valued function,” and (unless the issue is explicitly
raised) the functions we deal with will be assumed to be differentiable. We do
not intend to overwork this convention; for the sake of emphasis the words
“differentiable” and “real-valued” will still appear fairly frequently.

Differentiation is always a local operation: To compute the value of the
function ∂f/∂x at a point p of R3, it is sufficient to know the values of f at all
points q of R3 that are sufficiently near p. Thus, Definition 1.3 is unduly
restrictive; the domain of f need not be the whole of R3, but need only be an
open set of R3. By an open set O of R3 we mean a subset of R3 such that if a
point p is in O, then so is every other point of R3 that is sufficiently near p.
(A more precise definition is given in Chapter 2.) For example, the set of all
points p = ( p1, p2, p3) in R3 such that p1 > 0 is an open set, and the function 
yz logx defined on this set is certainly differentiable, even though its domain
is not the whole of R3. Generally speaking, the results in this chapter remain
valid if R3 is replaced by an arbitrary open set O of R3.

We are dealing with three-dimensional Euclidean space only because this is
the dimension we use most often in later work. It would be just as easy to
work with Euclidean n-space Rn, for which the points are n-tuples p = ( p1,
. . . , pn) and which has n natural coordinate functions x1, . . . , xn. All the
results in this chapter are valid for Euclidean spaces of arbitrary dimensions,
although we shall rarely take advantage of this except in the case of
the Euclidean plane R2. In particular, the results are valid for the real line
R1 = R. Many of the concepts introduced are designed to deal with higher
dimensions, however, and are thus apt to be overelaborate when reduced to
dimension 1.

Exercises

1. Let f = x2y and g = y sinz be functions on R3. Express the following
functions in terms of x, y, z:

(a) fg2. (b)

(c) (d)
∂
∂y

fsin .( )∂
∂ ∂

2 fg
y z
( )

.

∂
∂

∂
∂

f
x

g
g
y

f+ .

f g f g fg f g+( )( ) = ( ) + ( ) ( )( ) = ( ) ( )p p p p p p, .
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2. Find the value of the function f = x2y - y2z at each point:
(a) (1, 1, 1). (b) (3, -1, ).
(c) (a, 1, 1 - a). (d) (t, t2, t3).

3. Express ∂f/∂x in terms of x, y, and z if
(a) f = x sin (xy) + ycos (xz).
(b) f = sin g, g = eh, h = x2 + y2 + z2.

4. If g1, g2, g3, and h are real-valued functions on R3, then

is the function such that

Express ∂f /∂x in terms of x, y, and z, if h = x2 - yz and
(a) f = h(x + y, y2, x + z). (b) f = h(ez, ex+y, ex).
(c) f = h(x, -x, x).

1.2 Tangent Vectors

Intuitively, a vector in R3 is an oriented line segment, or “arrow.” Vectors are
used widely in physics and engineering to describe forces, velocities, angular
momenta, and many other concepts. To obtain a definition that is both prac-
tical and precise, we shall describe an “arrow” in R3 by giving its starting
point p and the change, or vector v, necessary to reach its end point p + v.
Strictly speaking, v is just a point of R3.

2.1 Definition‡ A tangent vector vp to R3 consists of two points of R3: its
vector part v and its point of application p.

We shall always picture vp as the arrow from the point p to the point p + v.
For example, if p = (1, 1, 3) and v = (2, 3, 2), then vp runs from (1, 1, 3) to
(3, 4, 5) as in Fig. 1.1.

We emphasize that tangent vectors are equal, vp = wq, if and only if they
have the same vector part, v = w, and the same point of application, p = q.

f h g g gp p p p p( ) = ( ) ( ) ( )( )1 2 3, , for all .†

f h g g g= ( )1 2 3, ,

1
2
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Tangent vectors vp and vq with the same vector part, but different points of
application, are said to be parallel (Fig. 1.2). It is essential to recognize that
vp and vq are different tangent vectors if p π q. In physics the concept of
moment of a force shows this clearly enough: The same force v applied at
different points p and q of a rigid body can produce quite different rotational
effects.

2.2 Definition Let p be a point of R3. The set Tp(R3) consisting of all
tangent vectors that have p as point of application is called the tangent space
of R3 at p (Fig. 1.3).

We emphasize that R3 has a different tangent space at each and every one
of its points.

1.2 Tangent Vectors 7
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Since all the tangent vectors in a given tangent space have the same point
of application, we can borrow the vector addition and scalar multiplication
of R3 to turn Tp(R3) into a vector space. Explicitly, we define vp + wp to be 
(v + w)p. and if c is a number we define c(vp) to be (cv)p. This is just the usual
“parallelogram law” for addition of vectors, and scalar multiplication by 
c merely stretches a tangent vector by the factor c—reversing its direction if
c < 0 (Fig. 1.4).

These operations on the tangent space Tp(R3) make it a vector space iso-
morphic to R3 itself. Indeed, it follows immediately from the definitions above
that for a fixed point p, the function v Æ vp is a linear isomorphism from R3

to Tp(R3)—that is, a linear transformation that is one-to-one and onto.
A standard concept in physics and engineering is that of a force field. The

gravitational force field of the earth, for example, assigns to each point of
space a force (vector) directed at the center of the earth.

2.3 Definition A vector field V on R3 is a function that assigns to each
point p of R3 a tangent vector V (p) to R3 at p.

Roughly speaking, a vector field is just a big collection of arrows, one at
each point of R3.

There is a natural algebra of vector fields. To describe it, we first reexam-
ine the familiar notion of addition of real-valued functions f and g. It is pos-
sible to add f and g because it is possible to add their values at each point.
The same is true of vector fields V and W. At each point p, the values V(p)
and W(p) are in the same vector space—the tangent space Tp(R3)—hence we
can add V(p) and W(p). Consequently, we can add V and W by adding their

8 1. Calculus on Euclidean Space
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values at each point. The formula for this addition is thus the same as for
addition of functions,

This scheme occurs over and over again. We shall call it the pointwise princi-
ple: If a certain operation can be performed on the values of two functions
at each point, then that operation can be extended to the functions them-
selves; simply apply it to their values at each point.

For example, we invoke the pointwise principle to extend the operation of
scalar multiplication (on the tangent spaces of R3). If f is a real-valued func-
tion on R3 and V is a vector field on R3, then f V is defined to be the vector
field on R3 such that

Our aim now is to determine in a concrete way just what vector fields look
like. For this purpose we introduce three special vector fields that will serve
as a “basis” for all vector fields.

2.4 Definition Let U1, U2, and U3 be the vector fields on R3 such that

for each point p of R3 (Fig. 1.5). We call U1, U2, U3—collectively—the natural
frame field on R3.

Thus, Ui (i = 1, 2, 3) is the unit vector field in the positive xi direction.

2.5 Lemma If V is a vector field on R3, there are three uniquely deter-
mined real-valued functions, v1, v2, v3 on R3 such that

U

U

U

p

p

p

1

2

3

1 0 0

0 1 0

0 0 1

p

p

p

( ) = ( )
( ) = ( )
( ) = ( )

, ,

, ,

, ,

fV f V( )( ) = ( ) ( )p p p p  for all .

V W V W+( )( ) = ( ) + ( )p p p .
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The functions v1, v2, v3 are called the Euclidean coordinate functions of V.

Proof. By definition, the vector field V assigns to each point p a tangent
vector V(p) at p. Thus, the vector part of V(p) depends on p, so we write
it (v1(p), v2(p), v3(p)). (This defines v1, v2, and v3 as real-valued functions on
R3.) Hence

for each point p (Fig. 1.6). By our (pointwise principle) definitions, this
means that the vector fields V and viUi have the same (tangent vector)
value at each point. Hence V = viUi. �

This last sentence uses two of our standard conventions: viUi means sum
over i = 1, 2, 3; the symbol (�) indicates the end of a proof.

The tangent-vector identity (a1, a2, a3)p = aiUi(p) appearing in this proof
will be used very often.

Computations involving vector fields may always be expressed in terms of
their Euclidean coordinate functions. For example, addition and multiplica-
tion by a function, are expressed in terms of coordinates by

vU wU v w U

f vU fv U

i i i i i i i

i i i i

Â Â Â
Â Â

+ = +( )

( ) = ( )
,

.

Â

Â
Â

Â

V v v v

v v v

v U v U v U

p

p p p

p p p p

p p p

p p p p p p

( ) = ( ) ( ) ( )( )
= ( )( ) + ( )( ) + ( )( )
= ( ) ( ) + ( ) ( ) + ( ) ( )

1 2 3

1 2 3

1 1 2 2 3 3

1 0 0 0 1 0 0 0 1

, ,

, , , , , ,

V vU vU vU= + +1 1 2 2 3 3.
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Since this is differential calculus, we shall naturally require that the various
objects we deal with be differentiable. A vector field V is differentiable pro-
vided its Euclidean coordinate functions are differentiable (in the sense of
Definition 1.3). From now on, we shall understand “vector field” to mean
“differentiable vector field.”

Exercises

1. Let v = (-2, 1, -1) and w = (0, 1, 3).
(a) At an arbitrary point p, express the tangent vector 3vp - 2wp as a linear
combination of U1(p), U2(p), U3(p).
(b) For p = (1, 1, 0), make an accurate sketch showing the four tangent
vectors vp, wp, -2vp, and vp + wp.

2. Let V = xU1 + yU2 and W = 2x2U2 - U3. Compute the vector field 
W - xV, and find its value at the point p = (-1, 0, 2).

3. In each case, express the given vector field V in the standard form viUi.
(a) 2z2U1 = 7V + xyU3.
(b) V(p) = ( p1, p3 - p1, 0)p for all p.
(c) V = 2(xU1 + yU2) - x(U1 - y2U3).
(d) At each point p, V(p) is the vector from the point ( p1, p2, p3) to the
point (1 + p1, p2p3, p2).
(e) At each point p, V(p) is the vector from p to the origin.

4. If V = y2U1 - x2U3 and W = x2U1 - zU2, find functions f and g such
that the vector field f V + gW can be expressed in terms of U2 and U3 only.

5. Let V1 = U1 - xU3, V2 = U2, and V3 = xU1 + U3.
(a) Prove that the vectors V1(p), V2(p), V3(p) are linearly independent at
each point of R3.
(b) Express the vector field xU1 + yU2 + zU3 as a linear combination of
V1, V2, V3.

1.3 Directional Derivatives

Associated with each tangent vector vp to R3 is the straight line t Æ p + tv
(see Example 4.2). If f is a differentiable function on R3, then t Æ f(p + tv)
is an ordinary differentiable function on the real line. Evidently the deriva-
tive of this function at t = 0 tells the initial rate of change of f as p moves
in the v direction

Â

1.3 Directional Derivatives 11



3.1 Definition Let f be a differentiable real-valued function on R3, and
let vp be a tangent vector to R3. Then the number

is called the derivative of f with respect to vp.
This definition appears in elementary calculus with the additional restric-

tion that vp be a unit vector. Even though we do not impose this restriction,
we shall nevertheless refer to vp[ f ] as a directional derivative.

For example, we compute vp[ f ] for the function f = x2yz, with p = (1, 1, 0)
and v = (1, 0, -3). Then

describes the line through p in the v direction. Evaluating f along this line,
we get

Now,

hence at t = 0, we find vp[ f ] = -3. Thus, in particular, the function f is 
initially decreasing as p moves in the v direction.

The following lemma shows how to compute vp[ f ] in general, in terms of
the partial derivatives of f at the point p.

3.2 Lemma If vp = (v1, v2, v3)p is a tangent vector to R3, then

Proof. Let p = ( p1, p2, p3); then

We use the chain rule to compute the derivative at t = 0 of the function

Since

d
dt

p tv vi i i+( ) = ,

f t f p tv p tv p tvp v+( ) = + + +( )1 1 2 2 3 3, , .

p v+ = + + +( )t p tv p tv p tv1 1 2 2 3 3, , .

v pp i
i

f v
f

x
[ ] =

∂
∂

( )Â .

d
dt

f t t tp v+( )( ) = - - -3 12 9 2;

f t t t t t tp v+( ) = +( ) ◊ ◊ -( ) = - - -1 1 3 3 6 32 2 3.

p v+ = ( ) + -( ) = + -( )t t t t1 1 0 1 0 3 1 1 3, , , , , ,

v p vp tf
d
dt

f t[ ] = +( )( ) =0
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we obtain

�

Using this lemma, we recompute vp[ f ] for the example above. Since 
f = x2yz, we have

Thus, at the point p = (1, 1, 0),

Then by the lemma,

as before.
The main properties of this notion of derivative are as follows.

3.3 Theorem Let f and g be functions on R3, vp and wp tangent vectors,
a and b numbers. Then

(1) (avp + bwp)[ f ] = avp[ f ] + bwp[ f ].
(2) vp[af + bg] = avp[ f ] + bvp[g].
(3) vp[ fg] = vp[ f ] .g(p) + f(p) .vp[g].

Proof. All three properties may be deduced easily from the preceding
lemma. For example, we prove (3). By the lemma, if v = (v1, v2, v3), then

But

Hence

�

v p p p p

p p p p

v p p v

p i
i i

i
i

i
i

p p

fg v
f

x
g f

g
x

v
f

x
g f v

g
x

f g f g

[ ] =
∂
∂

( ) ◊ ( ) + ( ) ◊
∂
∂

( )Ê
ËÁ

ˆ
¯̃

=
∂
∂

( )Ê
ËÁ

ˆ
¯̃

( ) + ( ) ∂
∂

( )Ê
ËÁ

ˆ
¯̃

= [ ] ◊ ( ) + ( ) ◊ [ ]

Â

Â Â

.

∂( )
∂

=
∂
∂

◊ + ◊
∂
∂

fg
x

f
x

g f
g
xi i i

.

v pp i
i

fg v
fg
x

[ ] =
∂( )
∂

( )Â .

v p f[ ] = + + -( ) = -0 0 3 1 3,

∂
∂

( ) =
∂
∂

( ) =
∂
∂

( ) =
f
x

f
y

f
z

p p p0 0 1, , and .

∂
∂

=
∂
∂

=
∂
∂

=
f
x

xyz
f
y

x z
f
z

x y2 2 2, , .

v p v pp t
i

if
d
dt

f t
f
x

v[ ] = +( )( ) =
∂
∂

( )= Â| .0
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The first two properties in the preceding theorem may be summarized by
saying that vp[ f ] is linear in vp and in f. The third property, as its proof makes
clear, is essentially just the usual Leibniz rule for differentiation of a product.
No matter what form differentiation may take, it will always have suitable linear
and Leibnizian properties.

We now use the pointwise principle to define the operation of a vector field
V on a function f. The result is the real-valued function V[ f ] whose value at
each point p is the number V(p)[ f ], that is, the derivative of f with respect to
the tangent vector V(p) at p. This process should be no surprise, since for a
function f on the real line, one begins by defining the derivative of f at a
point—then the derivative function df/dx is the function whose value at each
point is the derivative at that point. Evidently, the definition of V[ f ] is strictly
analogous. In particular, if U1, U2, U3 is the natural frame field on R3, then
Ui [ f ] = ∂f/∂xi. This is an immediate consequence of Lemma 3.2. For
example, U1(p) = (1, 0, 0)p; hence

which is precisely the definition of (∂f/∂x1)(p). This is true for all points 
p = (p1, p2, p3); hence U1[ f ] = ∂f/∂x1.

We shall use this notion of directional derivative more in the case of vector
fields than for individual tangent vectors.

3.4 Corollary If V and W are vector fields on R3 and f, g, h are real-
valued functions, then

(1) ( fV + gW)[h] = fV [h] + gW [h].
(2) V [af + bg] = aV [ f ] + bV [g], for all real numbers a and b.
(3) V [ fg] = V[ f ] .g + f .V [g].

Proof. The pointwise principle guarantees that to derive these properties
from Theorem 3.3 we need only be careful about the placement of paren-
theses. For example, we prove the third formula. By definition, the value
of the function V[ fg] at p is V (p)[ fg]. But by Theorem 3.3 this is

�

If the use of parentheses here seems extravagant, we remind the reader that
a meticulous proof of Leibniz’s formula

V f g f V g V f g f V g

V f g f V g

p p p p p p p p

p

( )[ ]◊ ( ) + ( )◊ ( )[ ] = [ ]( )◊ ( ) + ( )◊ [ ]( )
= [ ]◊ + ◊ [ ]( )( ).

U f
d
dt

f p t p p t1 1 2 3 0p( )[ ] = +( )( ) =, , ,
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must involve the same shifting of parentheses.
Note that the linearity of V[ f ] in V and f is for functions as “scalars” in

the first formula in Corollary 3.4 but only for numbers as “scalars” in the
second. This stems from the fact that fV signifies merely multiplication, but
V[ f ] is differentiation.

The identity Ui [ f ] = ∂f/∂xi makes it a simple matter to carry out explicit
computations. For example, if V = xU1 - y2U3 and f = x2y + z3, then

3.5 Remark Since the subscript notation vp for a tangent vector is some-
what cumbersome, from now on we shall frequently omit the point of appli-
cation p from the notation. This can cause no confusion, since v and w will
always denote tangent vectors, and p and q points of R3. In many situations
(for example, Definition 3.1) the point of application is crucial, and will be
indicated by using either the old notation vp or the phrase “a tangent vector
v to R3 at p.”

Exercises

1. Let vp be the tangent vector to R3 with v = (2, -1, 3) and p = (2, 0, -1).
Working directly from the definition, compute the directional derivative vp[ f ],
where

(a) f = y2z. (b) f = x7.
(c) f = ex cos y.

2. Compute the derivatives in Exercise 1 using Lemma 3.2.

3. Let V = y2U1 - xU3, and let f = xy, g = z3. Compute the functions
(a) V[ f ]. (b) V[g].
(c) V[ fg]. (d) fV[g] - gV[ f ].
(e) V[ f 2 + g2]. (f) V[V[ f ]].

4. Prove the identity V = V [xi ]Ui, where x1, x2, x3 are the natural coor-
dinate functions. (Hint: Evaluate V = viUi on xj.)

5. If V [ f ] = W[ f ] for every function f on R3, prove that V = W.

Â
Â

V f xU x y xU z y U x y y U z

x xy y z x y y z

[ ] = [ ] + [ ] - [ ] - [ ]
= ( ) + - - ( ) = -

1
2

1
3 2

3
2 2

3
3

2 2 2 2 22 0 0 3 2 3 .

d
dx

fg
df
dx

g f
dg
dx

( ) = ◊ + ◊
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1.4 Curves in R3

Let I be an open interval in the real line R. We shall interpret this liberally
to include not only the usual finite open interval a < t < b (a, b real numbers),
but also the infinite types a < t (a half-line to +•), t < b (a half-line to -•),
and also the whole real line.

One can picture a curve in R3 as a trip taken by a moving point a. At each
“time” t in some open interval, a is located at the point

in R3. In rigorous terms then, a is a function from I to R3, and the real-valued
functions a1, a2, a3 are its Euclidean coordinate functions. Thus we write 
a = (a1, a, a3), meaning, of course, that

We define the function a to be differentiable provided its (real-valued) co-
ordinate functions are differentiable in the usual sense.

4.1 Definition A curve in R3 is a differentiable function a : I Æ R3 from
an open interval I into R3.

We shall give several examples of curves, which will be used in Chapter 2
to experiment with results on the geometry of curves.

4.2 Example (1) Straight line. A line is the simplest type of curve in
Euclidean space; its coordinate functions are linear (in the sense t Æ at + b,
not in the homogeneous sense t Æ at). Explicitly, the curve a: R Æ R3 such
that

is the straight line through the point p = a(0) in the q direction.

(2) Helix. (Fig. 1.7). The curve t Æ (acos t,a sin t,0) travels around a circle
of radius a > 0 in the xy plane of R3. If we allow this curve to rise (or fall)
at a constant rate, we obtain a helix a: R Æ R3, given by the formula

where a > 0, b π 0.

a t a t a t bt( ) = ( )cos , sin ,

a t t p tq p tq p tq( ) = + = + + +( ) π( )p q q1 1 2 2 3 3 0, ,

a a a at t t t t I( ) = ( ) ( ) ( )( )1 2 3, ., for all in

a a a at t t t( ) = ( ) ( ) ( )( )1 2 3, ,
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(3) The curve

has a noteworthy property: Let C be the cylinder in R3 over the circle in the
xy plane with center at (1, 0, 0) and radius 1. Then a perpetually travels the
route sliced from C by the sphere with radius 2 and center at the origin.
A segment of this route is shown in Fig. 1.8.

(4) The curve a: R Æ R3 such that

shares with the helix in (2) the property of rising constantly. However, it lies
over the hyperbola xy = 1 in the xy plane instead of over a circle.

(5) The 3-curve a: R Æ R3 is defined by

If the coordinate functions of a curve are simple enough, its shape in R3 can
be found, at least approximately, by plotting a few points. We could get a rea-
sonable picture of curve a for 0 � t � 1 by computing a(t) for t = 0, 1/10, 1/2,
9/10, 1.

If we visualize a curve a in R3 as a moving point, then at every time t there
is a tangent vector at the point a(t) that gives the instantaneous velocity of
a at that time. ◆

a t t t t t t( ) = - +( )3 3 33 2 3, , .

a t e e tt t( ) = ( )-, , 2

Â

a t t t
t

t( ) = +Ê
Ë

ˆ
¯1 2

2
cos sin sin, , for all
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4.3 Definition Let a: I Æ R3 be a curve in R3 with a = (a1, a2, a3). For
each number t in I, the velocity vector of a at t is the tangent vector

at the point a(t) in R3 (Fig. 1.9).

This definition can be interpreted geometrically as follows. The derivative
at t of a real-valued function f on R is given by

This formula still makes sense if f is replaced by a curve a = (a1, a2, a3). In
fact,

This is the vector from a(t) to a(t + Dt), scalar multiplied by 1/Dt (Fig. 1.10).
Now, as Dt gets smaller, a(t + Dt) approaches a(t), and in the limit as 

Dt Æ 0, we get a vector tangent to the curve a at the point a(t), namely,

As the figure suggests, the point of application of this vector must be the
point a(t). Thus the standard limit operation for derivatives gives rise to our
definition of the velocity of a curve.

d
dt

t
d
dt

t
d
dt

t
a a a1 2 3( ) ( ) ( )Ê

Ë
ˆ
¯, , .

1 1 1

2 2 3 3

D
D

D
D

D
D

D
D

t
t t t

t t t
t

t t t
t

t t t
t

a a
a a

a a a a

+( ) - ( )( ) =
+( ) - ( )Ê

Ë

+( ) - ( ) +( ) - ( )ˆ
¯

,

, .

df
dt

t
f t t f t

tt
( ) =

+( ) - ( )
Æ

lim .
D

D
D0

¢( ) = ( ) ( ) ( )Ê
Ë

ˆ
¯ ( )

a
a a a

a

t
d
dt

t
d
dt

t
d
dt

t
t

1 2 3, ,
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An application of the identity

to the velocity vector a ¢(t) at t yields the alternative formula

For example, the velocity of the straight line a(t) = p + tq is

The fact that a is straight is reflected in the fact that all its velocity vectors
are parallel; only the point of application changes as t changes.

For the helix

the velocity is

The fact that the helix rises constantly is shown by the constancy of the z
coordinate of a ¢(t).

Given any curve, it is easy to construct new curves that follow the same
route.

4.4 Definition Let a: I Æ R3 be a curve. If h: J Æ I is a differentiable
function on an open interval J, then the composite function

is a curve called a reparametrization of a by h.

For each s Œ J, the new curve b is at the point b(s) = a(h(s)) reached by
a at h(s) in I (Fig. 1.11). Thus b represents a different trip over at least part
of the route of a.

b a= ( ) Æh J: R3

¢( ) = -( ) ( )a at a t a t b
t

sin cos ., ,

a t a t a t bt( ) = ( )cos sin ,, ,

¢( ) = ( ) =( ) ( )a a at q q q
t t1 2 3, , q .

¢( ) = ( ) ( )( )Âa
a

at
d
dt

t U ti
i .

v v v vU
p i i1 2 3, ,( ) = ( )Â p
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To compute the coordinates of b, simply substitute t = h(s) into the co-
ordinates a1(t), a2(t), a3(t) of a. For example, suppose

If h(s) = s2 on J: 0 < s < 2, then the reparametrized curve is

The following lemma relates the velocities of a curve and of a repara-
metrization.

4.5 Lemma If b is the reparametrization of a by h, then

Proof. If a = (a1, a2, a3), then

Using the “prime” notation for derivatives, the chain rule for a composi-
tion of real-valued functions f and g reads (g( f ))¢ = g¢( f ) . f ¢. Thus, in the
case at hand,

By the definition of velocity, this yields

�

According to this lemma, to obtain the velocity of a reparametrization 
of a by h, first reparametrize a ¢ by h, then scalar multiply by the derivative
of h.

Since velocities are tangent vectors, we can take the derivative of a func-
tion with respect to a velocity.

¢( ) = ( )¢( )
= ¢ ( )( )◊ ¢( ) ¢ ( )( )◊ ¢( ) ¢ ( )( )◊ ¢( )( )
= ¢( ) ¢ ( )( )

b a

a a a

a

s h s

h s h s h s h s h s h s

h s h s

1 2 3, ,

.

a ai ih s h s h s( )¢( ) = ¢ ( )( )◊ ¢( ).

b a a a as h s h s h s h s( ) = ( )( ) = ( )( ) ( )( ) ( )( )( 1 2 3, , .

¢( ) = ( )( ) ¢ ( )( )b as dh ds s h s .

b a as h s s s s s( ) = ( )( ) = ( ) = -( )2 3 21, , .

a t t t t t on I t( ) = -( ) < <, , 1 0 4: .
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4.6 Lemma Let a be a curve in R3 and let f be a differentiable function
on R3. Then

Proof. Since

we conclude from Lemma 3.2 that

But the composite function f(a) may be written f(a1, a2, a3), and the
chain rule then gives exactly the same result for the derivative of f(a). �

By definition, a ¢(t)[ f ] is the rate of change of f along the line through a(t)
in the a ¢(t) direction. (If a ¢(t) π 0, this is the tangent line to a at a(t); see
Exercise 9.) The lemma shows that this rate of change is the same as that of
f along the curve a itself.

Since a curve a: I Æ R3 is a function, it makes sense to say that a is one-
to-one; that is, a(t) = a(t1) only if t = t1. Another special property of curves
is periodicity: A curve a: R Æ R3 is periodic if there is a number p > 0 such
that a(t + p) = a(t) for all t—and the smallest such number p is then called
the period of a.

From the viewpoint of calculus, the most important condition on a curve
a is that it be regular, that is, have all velocity vectors different from zero.
Such a curve can have no corners or cusps.

The following remarks about curves (offered without proof ) describe
another familiar way to formulate the concept of “curve.” If f is a differen-
tiable real-valued function on R2, let

be the set of all points p in R2 such that f(p) = a. Now, if the partial deriv-
atives ∂f/∂x and ∂f/∂y are never simultaneously zero at any point of C, then
C consists of one or more separate “components,” which we shall call
Curves.† For example, C: x2 + y2 = r2 is the circle of radius r centered at the

C f a: =

¢( )[ ] =
∂
∂

( )( ) ( )Âa a
a

t f
f

x
t

d
dt

t
i

i .

¢ = Ê
Ë

ˆ
¯a

a a a

a

d
dt

d
dt

d
dt

1 2 3, , ,

¢( )[ ] =
( )( ) ( )a
a

t f
d f

dt
t .
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origin of R2, and the hyperbola C: x2 - y2 = r2 splits into two Curves
(“branches”) C1 and C2 as shown in Fig. 1.12.

Every Curve C is the route of many regular curves, called parametrizations
of C. For example, the curve

is a well-known periodic parametrization of the circle given above, and for 
r > 0 the one-to-one curve

parametrizes the branch x > 0 of the hyperbola.

Exercises

1. Compute the velocity vector of the curve in Example 4.2(3) for arbitrary
t and for t = 0, t = p/2, t = p, visualizing those on Fig. 1.8.

2. Find the unique curve such that a(0) = (1, 0, 5) and a¢(t) = (t2, t, et).

3. Find the coordinate functions of the curve b = a(h), where a is the curve
in Example 4.2(3) and h(s) = cos-1 (s) on J: 0 < s < 1.

4. Reparametrize the curve a in Example 4.2(4) using h(s) = log s on 
J: s > 0. Check the equation in Lemma 4.5 in this case by calculating each
side separately.

5. Find the equation of the straight line through the points (1, -3, -1) 
and (6, 2, 1). Does this line meet the line through the points (-1, 1, 0) and 
(-5, -1, -1)?

6. Deduce from Lemma 4.6 that in the definition of directional derivative
(Def. 3.1) the straight line t Æ p + tv can be replaced by any curve a with
initial velocity vp, that is, such that a(0) = p and a ¢(0) = vp.

b t r t r t( ) = ( )cosh sinh,

a t r t r t( ) = ( )cos sin,
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7. (Continuation.)
(a) Show that the curves with coordinate functions

all have the same initial velocity vp.
(b) If f = x2 - y2 + z2, compute vp[ f ] by calculating d( f(a))/dt at t = 0,
using each of three curves in (a).

8. Sketch the following Curves in R2, and find parametrizations for each.
(a) C: 4x2 + y2 = 1, (b) C: 3x + 4y = 1,
(c) C: y = ex.

9. For a fixed t, the tangent line to a regular curve a at the point a(t) is the
straight line u Æ a(t) + ua ¢(t), where we delete the point of application of
a ¢(t). Find the tangent line to the helix a(t) = (2cos t, 2 sin t, t) at the points
a(0) and a(p/4).

1.5 1-Forms

If f is a real-valued function on R3, then in elementary calculus the differen-
tial of f is usually defined as

It is not always made clear exactly what this formal expression means. In this
section we give a rigorous treatment using the notion of 1-form, and forms
tend to appear at crucial moments in later work.

5.1 Definition A 1-form f on R3 is a real-valued function on the set of
all tangent vectors to R3 such that f is linear at each point, that is,

for any numbers a, b and tangent vectors v, w at the same point of R3.

We emphasize that for every tangent vector v, a 1-form f defines a real
number f(v); and for each point p in R3, the resulting function fp: Tp(R3) Æ R
is linear. Thus at each point p, fp is an element of the dual space of Tp(R3). In
this sense the notion of 1-form is dual to that of vector field.

The sum of 1-forms f and y is defined in the usual pointwise fashion:

f f fa b a bv w v w+( ) = ( ) + ( )

df
f
x

dx
f
y

dy
f
z

dz=
∂
∂

+
∂
∂

+
∂
∂

.

t t t t t t t t t, , , , , , , ,1 2+( ) ( ) ( )sin cos sinh cosh
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Similarly, if f is a real-valued function on R3 and f is a 1-form, then ff is
the 1-form such that

for all tangent vectors vp.
There is also a natural way to evaluate a 1-form f on a vector field V to

obtain a real-valued function f(V): At each point p the value of f(V) is the
number f(V(p)). Thus a 1-form may also be viewed as a machine that con-
verts vector fields into real-valued functions. If f(V) is differentiable when-
ever V is, we say that f is differentiable. As with vector fields, we shall always
assume that the 1-forms we deal with are differentiable.

A routine check of definitions shows that f(V) is linear in both f and V;
that is,

and

where f and g are functions.
Using the notion of directional derivative, we now define a most impor-

tant way to convert functions into 1-forms.

5.2 Definition If f is a differentiable real-valued function on R3, the dif-
ferential df of f is the 1-form such that

In fact, df is a 1-form, since by definition it is a real-valued function on
tangent vectors, and by (1) of Theorem 3.3 it is linear at each point p. Clearly,
df knows all rates of change of f in all directions on R3, so it is not surpris-
ing that differentials are fundamental to the calculus on R3.

Our task now is to show that these rather abstract definitions lead to famil-
iar results when expressed in terms of coordinates.

5.3 Example 1-Forms on R3. (1) The differentials dx1, dx2, dx3 of the
natural coordinate functions. Using Lemma 3.2 we find

dx x v
x
x

v vi p p i j
i

j
j ij i

jj

v v p( ) = [ ] =
∂
∂

( ) = =ÂÂ d ,

df fp p pv v v( ) = [ ] for all tangent vectors .

f g V f V g Vf y f y+( )( ) = ( ) + ( ),

f f ffV gW f V g W+( ) = ( ) + ( )

f fp pf f( )( ) = ( ) ( )v p v

f y f y+( )( ) = ( ) + ( )v v v vfor all tangent vectors .
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where dij is the Kronecker delta (0 if i π j, 1 if i = j). Thus the value of dxi

on an arbitrary tangent vector vp is the ith coordinate vi of its vector part—and
does not depend on the point of application p.

(2) The 1-form y = f1dx1 + f2dx2 + f3dx3. Since dxi is a 1-form, our def-
initions show that y is also a 1-form for any functions f1, f2, f3. The value
of y on an arbitrary tangent vector vp is

The first of these examples shows that the 1-forms dx1, dx2, dx3 are the ana-
logues for tangent vectors of the natural coordinate functions x1, x2, x3 for
points. Alternatively, we can view dx1, dx2, dx3 as the “duals” of the natural
unit vector fields U1, U2, U3. In fact, it follows immediately from (1) above
that the function dxi (Uj ) has the constant value dij.

We now show that every 1-form can be written in the concrete manner
given in (2) above.

5.4 Lemma If f is a 1-form on R3, then f = fidxi , where fi = f (Ui).
These functions f1, f2, f3 are called the Euclidean coordinate functions of f.

Proof. By definition, a 1-form is a function on tangent vectors; thus f
and fidxi are equal if and only if they have the same value on every
tangent vector vp = viUi(p). In (2) of Example 5.3 we saw that

On the other hand,

since fi = f(Ui). Thus f and fidxi do have the same value on every
tangent vector. �

This lemma shows that a 1-form on R3 is nothing more than an expression
f dx + g dy + h dz, and such expressions are now rigorously defined as func-
tions on tangent vectors. Let us now show that the definition of differential
of a function (Definition 5.2) agrees with the informal definition given at the
start of this section.

5.5 Corollary If f is a differentiable function on R3, then

df
f

x
dx

i
i=

∂
∂Â .

Â

f f fv p p pp i i i i i ivU v U v f( ) = ( )( ) = ( )( ) = ( )Â Â Â

f dx f vi i p i iÂ Â( )( ) = ( )v p .

Â
Â

Â

y v v p v pp i i p i i p i if dx f dx f v( ) = ( )( ) = ( ) ( ) = ( )Â Â Â ,
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Proof. The value of (∂f/∂xi)dxi on an arbitrary tangent vector vp is
(∂f/∂xi) (p)vi. By Lemma 3.2, df(vp) = vp[ f ] is the same. Thus the 1-forms

df and (∂f/∂xi) dxi are equal. �

Using either this result or the definition of d, it is immediate that

Finally, we determine the effect of d on products of functions and on com-
positions of functions.

5.6 Lemma Let fg be the product of differentiable functions f and g on
R3. Then

Proof. Using Corollary 5.5, we obtain

�

5.7 Lemma Let f: R3 Æ R and h: R Æ R be differentiable functions, so
the composite function h( f ): R3 Æ R is also differentiable. Then

Proof. (The prime here is just the ordinary derivative, so h¢( f ) is again a
composite function, from R3 to R.) The usual chain rule for a composite
function such as h( f ) reads

Hence

�

To compute df for a given function f it is almost always simpler to use these
properties of d rather than substitute in the formula of Corollary 5.5. Then

d h f
h f
x

dx h f
f

x
dx h f df
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i
i( )( ) =

∂ ( )( )
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from df we immediately get the partial derivatives of f, and, in fact, all its
directional derivatives. For example, suppose

Then by Lemmas 5.6 and 5.7,

Now use the rules above to evaluate this expression on a tangent vector vp.
The result is

Exercises

1. Let v = (1, 2, -3) and p = (0, -2, 1). Evaluate the following 1-forms
on the tangent vector vp.

(a) y2 dx. (b) z dy - y dz.
(c) (z2 - 1)dx - dy + x2 dz.

2. If f = fidxi and V = viUi, show that the 1-form f evaluated on the
vector field V is the function f(V) = fivi.

3. Evaluate the 1-form f = x2 dx - y2 dz on the vector fields
V = xU1 + yU2 + zU3,
W = xy (U1 - U3) + yz (U1 - U2), and (1/x)V + (1/y)W.

4. Express the following differentials in terms of df:
(a) d( f 5). (b) , where f > 0.
(c) d(log(1 + f 2)).

5. Express the differentials of the following functions in the standard form
fi dxi.
(a) (x2 + y2 + z2)1/2. (b) tan-1(y/x).

6. In each case compute the differential of f and find the directional deriv-
ative vp[ f ], for vp as in Exercise 1.

(a) f = xy2 - yz2. (b) f = xeyz.
(c) f = sin(xy) cos(xz).

Â

d f( )

Â
ÂÂ

v vp pf df p p v p p p v p v[ ] = ( ) = + + -( ) + +( )2 2 1 11 2 1 1
2

2 3 2 2
2

3.

df x dx y x dy y dy z y dz

xy dx x yz dy y dz
f x f y f z

= ( ) + -( ) + ( ) + +( )
= + + -( ) + +( )

∂ ∂ ∂ ∂ ∂ ∂

2 1 2 2

2 2 1 2

2 2

2 2

{ 1 244 344 124 34
.

f x y y z= -( ) + +( )2 21 2 .
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7. Which of the following are 1-forms? In each case f is the function on
tangent vectors such that the value of f on (v1, v2, v3)p is

(a) v1 - v3. (b) p1 - p3.
(c) v1p3 + v2p1. (d) vp[x2 + y2].
(e) 0. (f) (p1)2.

In case f is a 1-form, express it as fi dxi.

8. Prove Lemma 5.6 directly from the definition of d.

9. A 1-form f is zero at a point p provided f(vp) = 0 for all tangent vectors
at p. A point at which its differential df is zero is called a critical point of the
function f. Prove that p is a critical point of f if and only if

Find all critical points of f = (1 - x2)y + (1 - y2)z.

(Hint: Find the partial derivatives of f by computing df.)

10. (Continuation.) Prove that the local maxima and local minima of f are
critical points of f. (f has a local maximum at p if f(q) � f(p) for all q near
p.)

11. It is sometimes asserted that df is the linear approximation of Df.
(a) Explain the sense in which (df )(vp) is a linear approximation of
f (p + v) - f(p).
(b) Compute exact and approximate values of f(0.9, 1.6, 1.2) - f(1, 1.5, 1),
where f = x2y/z.

1.6 Differential Forms

The 1-forms on R3 are part of a larger system called the differential forms on
R3. We shall not give as rigorous an account of differential forms as we did
of 1-forms since our use of the full system on R3 is limited. However, the
properties established here are valid whenever differential forms are used.

Roughly speaking, a differential form on R3 is an expression obtained by
adding and multiplying real-valued functions and the differentials dx1, dx2,
dx3 of the natural coordinate functions of R3. These two operations obey the
usual associative and distributive laws; however, the multiplication is not
commutative. Instead, it obeys the

alternation rule: dx dx dx dx i ji j j i= - £ £( )1 3, .

∂
∂
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∂
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z

p p p 0.
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This rule appears—although rather inconspicuously—in elementary calculus
(see Exercise 9).

A consequence of the alternation rule is the fact that “repeats are zero,”
that is, dxi dxi = 0, since if i = j the alternation rule reads

If each summand of a differential form contains p dxi’s (p = 0, 1, 2, 3), the
form is called a p-form, and is said to have degree p. Thus, shifting to dx, dy,
dz, we find

A 0-form is just a differentiable function f.
A 1-form is an expression f dx + g dy + h dz, just as in the preceding section.
A 2-form is an expression f dx dy + g dx dz + h dy dz.
A 3-form is an expression f dx dy dz.
We already know how to add 1-forms: simply add corresponding coeffi-

cient functions. Thus, in index notation,

The corresponding rule holds for 2-forms or 3-forms.
On three-dimensional Euclidean space, all p-forms with p > 3 are zero. This

is a consequence of the alternation rule, for a product of more than three
dxi’s must contain some dxi twice, but repeats are zero, as noted above. For
example, dx dy dx dz = -dx dx dy dz = 0, since dx dx = 0. As a reminder
that the alternation rule is to be used, we denote this multiplication of forms
by a wedge Ÿ. (However, we do not bother with the wedge when only prod-
ucts of dx, dy, dz are involved.)

6.1 Example Computation of wedge products.

(1) Let

Then

But dx dx = 0 and dy dx = -dx dy. Thus

In general, the product of two 1-forms is a 2-form.

f yŸ = + -yz dx dy x dx dz xy dy dz2 .

f yŸ = -( ) Ÿ +( )
= + - -

x dx y dy z dx x dz

xz dx dx x dx dz yz dy dx yx dy dz2 .

f y= - = +x dx y dy z dx x dzand .

f dx g dx f g dxi i i i i i iÂ Â Â+ = +( ) .

dx dx dx dxi i i i= - .
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(2) Let f and y be the 1-forms given above and let q = z dy. Then

Since dy dx dy and dy dy dz each contain repeats, both are zero. Thus

(3) Let f be as above, and let h be the 2-form y dx dz + x dy dz. Omitting
forms containing repeats, we find

It should be clear from these examples that the wedge product of a p-form
and a q-form is a ( p + q)-form. Thus such a product is automatically zero
whenever p + q > 3.

6.2 Lemma If f and y are 1-forms, then

Proof. Write

Then by the alternation rule,

�

In the language of differential forms, the operator d of Definition 5.2 con-
verts a 0-form f into a 1-form df. It is easy to generalize to an operator (also
denoted by d ) that converts a p-form h into a ( p + 1)-form dh: One simply
applies d (of Definition 5.2) to the coefficient functions of h. For example,
here is the case p = 1.

6.3 Definition If f = fi dxi is a 1-form on R3, the exterior derivative
of f is the 2-form df = dfi Ÿ dxi.

If we expand the preceding definition using Corollary 5.5, we obtain the
following interesting formula for the exterior derivative of

f
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f y y fŸ = - = - ŸÂ Âf g dx dx g f dx dxi j i j j i j i= .

f y= =Â Âf dx g dxi i i i, .

f y y fŸ = - Ÿ .

f hŸ = - = +( )x dx dy dz y dy dx dz x y dx dy dz2 2 2 2 .

q f yŸ Ÿ = -x z dx dy dz2 .

q f yŸ Ÿ = + -yz dy dx dy x z dy dx dz xyz dy dy dz2 2 .
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There is no need to memorize this formula; it is more reliable simply to apply
the definition in each case. For example, suppose

Then

It is easy to check that the general exterior derivative enjoys the same lin-
earity property as the particular case in Definition 5.2; that is,

where f and y are arbitrary forms and a and b are numbers.
The exterior derivative and the wedge product work together nicely:

6.4 Theorem Let f and g be functions, f and y 1-forms. Then

(1) d( fg) = df g + f dg.
(2) d( ff) = df Ÿ f + f df.
(3) d(f Ÿ y) = df Ÿ y - f Ÿ dy.†

Proof. The first formula is just Lemma 5.6. We include it to show the
family resemblance of all three formulas. The proof of (2) is a simpler
version of that of (3), so we outline a proof of the latter—watching to see
where the minus sign comes from.

It suffices to prove the formula when f = f du, y = g dv, where u and v
are any of the coordinate functions x1, x2, x3. In fact, every 1-form is a sum
of such terms, so the general case will follow by the linearity of d and the
algebra of wedge products.

For example, let us try the typical case f = f dx, y = g dy. Since repeats
kill, there is no use writing down terms that are bound to be eliminated.
Hence

(*)d d fg dx dy
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Now,

But

since dx dz dy = -dx dy dz. Thus we must subtract this last equation from
its predecessor to get (*). �

One way to remember the minus sign in equation (3) of the theorem is to
treat d as if it were a 1-form. To reach y, d must change places with f, hence
the minus sign is consistent with the alternation rule in Lemma 6.2.

Differential forms, and the associated notions of wedge product and exte-
rior derivative, provide the means of expressing quite complicated relations
among the partial derivatives in a highly efficient way. The wedge product
saves much useless labor by discarding, right at the start, terms that will even-
tually disappear. But the exterior derivative d is the key. Exercise 8 shows, for
example, how it replaces all three of the differentiation operations of classi-
cal vector analysis.

Exercises

1. Let f = yz dx + dz, y = sin z dx + cos z dy, x = dy + z dz. Find the
standard expressions (in terms of dxdy, . . .) for

(a) f Ÿ y, y Ÿ x, x Ÿ f. (b) df, dy, dx.

2. Let f = dx/y and y = z dy. Check the Leibnizian formula (3) of
Theorem 6.4 in this case by computing each term separately.

3. For any function f show that d(df ) = 0. Deduce that d( f dg) = df Ÿ dg.

4. Simplify the following forms:
(a) d( f dg + g df ). (b) d(( f - g) (df + dg)).
(c) d( f dg Ÿ g df ). (d) d(gf df) + d( f dg).

5. For any three 1-forms fi = j fijdxj (1 � i � 3), prove

f f f1 2 3

11 12 13

21 22 23

31 32 33
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f f f
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6. If r, J, z are the cylindrical coordinate functions on R3, then x = rcosJ,
y = r sin J, z = z. Compute the volume element dx dy dz of R3 in cylindrical
coordinates. (That is, express dx dy dz in terms of the functions r, J, z, and
their differentials.)

7. For a 2-form

the exterior derivative dh is defined to be the 3-form obtained by 
replacing f, g, and h by their differentials. Prove that for any 1-form f,
d(df) = 0.

Exercises 3 and 7 show that d 2 = 0, that is, for any form x, d(dx) = 0. (If
x is a 2-form, then d(dx) = 0, since its degree exceeds 3.)

8. Classical vector analysis avoids the use of differential forms on R3 by con-
verting 1-forms and 2-forms into vector fields by means of the following one-
to-one correspondences:

Vector analysis uses three basic operations based on partial differentiation:
Gradient of a function f:

Curl of a vector field V = fiUi:

Divergence of a vector field V = fiUi:

Prove that all three operations may be expressed by exterior derivatives as
follows:

(a)

(b)

(c) If , then divh h´ = ( )
( )1

V d V dx dy dz.

If , then curlf f´ ´
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9. Let f and g be real-valued functions on R2. Prove that

This formula appears in elementary calculus; show that it implies the alter-
nation rule.

1.7 Mappings

In this section we discuss functions from Rn to Rm. If n = 3 and m = 1, then
such a function is just a real-valued function on R3. If n = 1 and m = 3, it
is a curve in R3. Although our results will necessarily be stated for arbitrary
m and n, we are primarily interested in only three other cases:

The fundamental observation about a function F: Rn Æ Rm is that it can
be completely described by m real-valued functions on Rn. (We saw this
already in Section 4 for n = 1, m = 3.)

7.1 Definition Given a function F: Rn Æ Rm, let f1, f2, . . . , fm, denote
the real-valued functions on Rn such that

for all points p in Rn. These functions are called the Euclidean coordinate func-
tions of F, and we write F = (f1, f2, . . . , fm).

The function F is differentiable provided its coordinate functions are dif-
ferentiable in the usual sense. A differentiable function F: Rn Æ Rm is called
a mapping from Rn to Rm.

Note that the coordinate functions of F are the composite functions 
fi = xi(F ), where x1, . . . , xm are the coordinate functions of Rm.

Mappings may be described in many different ways. For example, suppose
F: R3 Æ R3 is the mapping F = (x2, yz, xy). Thus

Now, p = (p1, p2, p3), and by definition of the coordinate functions,

F x y z x yp p p p p p p( ) = ( ) ( ) ( ) ( ) ( )( )2, , for all .
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Hence we obtain the following pointwise formula for F:

Thus, for example,

In principle, one could deduce the theory of curves from the general theory
of mappings. But curves are reasonably simple, while a mapping, even in the
case R2 Æ R2, can be quite complicated. Hence we reverse this process and
use curves, at every stage, to gain an understanding of mappings.

7.2 Definition If a: I Æ Rn is a curve in Rn and F: Rn Æ Rm is a mapping,
then the composite function b = F(a): I Æ Rm is a curve in Rm called the
image of a under F (Fig. 1.13).

7.3 Example Mappings. (1) Consider the mapping F: R3 Æ R3 such 
that

In pointwise terms then,

Only when a mapping is quite simple can one hope to get a good idea of its
behavior by merely computing its values at some finite number of points. But
this function is quite simple —it is a linear transformation from R3 to R3.

F p p p p p p p p p p p1 2 3 1 2 1 2 3 1 2 32, , , , for all , ,( ) = - +( ) .

F x y x y z= - +( ), , 2 .

F F1 2 0 1 0 2 3 1 3 9 3 3, , , , and , ,-( ) = -( ) -( ) = -( ), , .

F p p p p p p p p p p p1 2 3 1
2

2 3 1 2 1 2 3, , , , for all , ,( ) = ( ) .

x p y p z pp p p( ) = ( ) = ( ) =1 2 3, , .
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Thus by a well-known theorem of linear algebra, F is completely determined
by its values at three (linearly independent) points, say the unit points

(2) The mapping F: R2 Æ R2 such that F(u, v) = (u2 - v2, 2uv). (Here u and
v are the coordinate functions of R2.) To analyze this mapping, we examine
its effect on the curve a(t) = (rcos t, r sin t), where 0 � t � 2p. This curve
takes one counterclockwise trip around the circle of radius r with center at
the origin. The image curve is

with 0 � t � 2p. Using the trigonometric identities

we find for b = F(a) the formula

with 0 � t � 2p. This curve takes two counterclockwise trips around the circle
of radius r2 centered at the origin (Fig. 1.14).

Thus the effect of F is to wrap the plane R2 smoothly around itself twice—
leaving the origin fixed, since F(0, 0) = (0, 0). In this process, each circle of
radius r is wrapped twice around the circle of radius r2.

Generally speaking, differential calculus deals with approximation of
smooth objects by linear objects. The best-known case is the approximation
of a differentiable real-valued function f near x by the linear function Dx Æ
f ¢(x) Dx, which gives the tangent line at x to the graph of f. Our goal now is
to define an analogous linear approximation for a mapping F: Rn Æ Rm near
a point p of Rn.

b t r t r t( ) = ( )2 22 2cos sin, ,

cos cos sin sin sin cos2 2 22 2t t t t t t= - =, ,

b at F t

F r t r t

r t r t r t t

( ) = ( )( )
= ( )
= -( )

cos sin

cos sin cos sin

,

,2 2 2 2 22

u u u1 2 31 0 0 0 1 0 0 0 1= ( ) = ( ) = ( ), , , , , , ,, .
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Since Rn is filled by the radial lines a(t) = p + tv starting at p, Rm is filled
by their image curves b(t) = F(p + tv) starting at F(p) (Fig. 1.15). So 
we approximate F near p by the map F* that sends each initial velocity 
a¢(0) = vp to the initial velocity b¢(0).

7.4 Definition Let F: Rn Æ Rm be a mapping. If v is a tangent vector to
Rn at p, let F*(v) be the initial velocity of the curve t Æ F(p + tv). The result-
ing function F* sends tangent vectors to Rn to tangent vectors to Rm, and is
called the tangent map of F.

The tangent map can be described explicitly as follows.

7.5 Proposition Let F = (f1, f2, . . . , fm) be a mapping from Rn to Rm.
If v is a tangent vector to Rn at p, then

Proof. For definiteness, take m = 3. Then

By definition, F*(v) = b¢(0). To get b¢(0), we take the derivatives, at t = 0,
of the coordinate functions of b (Definition 4.3). But

Thus

F f f f*( ) = [ ] [ ] [ ]( ) ( )v v v v1 2 3 0, , ,b

d
dt

f t fi t ip v v+( )( ) = [ ]=0 .

b t F t f t f t f t( ) = +( ) = +( ) +( ) +( )( )p v p v p v p v1 2 3, , .

F f f Fm*( ) = [ ] [ ]( ) ( )v v v p1 , . . . , .at
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and b(0) = F(p). �

Fix a point p of Rn. The definition of tangent map shows that F* sends
tangent vectors at p to tangent vectors at F(p). Thus for each p in Rn, the
function F* gives rise to a function

called the tangent map of F at p. (Compare the analogous situation in 
elementary calculus where a function f: R Æ R has a derivative function 
f ¢: R Æ R that at each point t of R gives the derivative of f at t.)

7.6 Corollary If F: Rn Æ Rm is a mapping, then at each point p of Rn the
tangent map F*p: Tp(Rn) Æ TF(p)(Rm) is a linear transformation.

Proof. We must show that for tangent vectors v and w at p and numbers
a, b,

This follows immediately from the preceding proposition by using the lin-
earity in assertion (1) of Theorem 3.3. �

In fact, the tangent map F*p at p is the linear transformation that best
approximates F near p. This idea is fully developed in advanced calculus,
where it is used to prove Theorem 7.10.

Another consequence of the proposition is that mappings preserve veloci-
ties of curves. Explicitly:

7.7 Corollary Let F: Rn Æ Rm be a mapping. If b = F(a) is the image of
a curve a in Rn, then b¢ = F*(a ¢).

Proof. Again, set m = 3. If F = (f1, f2, f3), then

Hence Theorem 7.5 gives

But by Lemma 4.6,

F f f f* ¢( ) = ¢[ ] ¢[ ] ¢[ ]( )a a a a1 2 3, .,

b a a a a= ( ) = ( ) ( ) ( )( )F f f f1 2 3, , .

F a b aF bF* +( ) = *( ) + *( )v w v w .

F T Tp p
n

F p
m

* ( ) Æ ( )( ): R R
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Hence

�

Let {Uj} (1 £ j £ n) and {Ūi} (1 £ i £ m) be the natural frame fields of Rn

and Rm, respectively (Def. 2.4). Then:

7.8 Corollary If F = (f1, . . . , fm) is a mapping from Rn to Rm, then

Proof. This follows directly from Proposition 7.5, since .

�

The matrix appearing in the preceding formula,

is called the Jacobian matrix of F at p. (When m = n = 1; it reduces to a
single number: the derivative of F at p.)

Just as the derivative of a function is used to gain information about the
function, the tangent map F* can be used in the study of a mapping F.

7.9 Definition A mapping F: Rn Æ Rm is regular provided that at every
point p of Rn the tangent map F*p is one-to-one.

Since tangent maps are linear transformations, standard results of linear
algebra show that the following conditions are equivalent:

(1) F*p is one-to-one.
(2) F*(vp) = 0 implies vp = 0.
(3) The Jacobian matrix of F at p has rank n, the dimension of the domain

Rn of F.

∂
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The following noteworthy property of linear transformations T: V Æ W
will be useful in dealing with tangent maps. If the vector spaces V and W
have the same dimension, then T is one-to-one if and only if it is onto, so
either property is equivalent to T being a linear isomorphism.

A mapping that has a (differentiable) inverse mapping is called a diffeo-
morphism. The results of this section all remain valid when Euclidean spaces
Rn are replaced by open sets of Euclidean spaces, so we can speak of a dif-
feomorphism from one open set to another.

We state without proof one of the fundamental results of advanced cal-
culus.

7.10 Theorem Let F: Rn Æ Rn be a mapping between Euclidean spaces
of the same dimension. If F*p is one-to-one at a point p, there is an open set
U containing p such that F restricted to U is a diffeomorphism of U onto an
open set V.

This is called the inverse function theorem since it asserts that the restricted
mapping U ÆV has a differentiable inverse mapping V Æ U. Exercise 6 gives
a suggestion of its importance.

Exercises

In the first four exercises F denotes the mapping F(u, v) = (u2 - v2, 2uv) in
Example 7.3.

1. Find all points p such that
(a) F(p) = (0, 0). (b) F(p) = (8, 6).
(c) F(p) = p.

2. (a) Sketch the horizontal line v = 1 and its image under F (a parabola).
(b) Do the same for the vertical u = 1.
(c) Describe the image of the unit square 0 � u, v � 1 under F.

3. Let v = (v1, v2) be a tangent vector to R2 at p = (p1, p2). Apply Defini-
tion 7.4 directly to express F*(v) in terms of the coordinates of v and p.

4. Find a formula for the Jacobian matrix of F at all points, and deduce
that F*p is a linear isomorphism at every point of R2 except the origin.

5. If F: Rn Æ Rm is a linear transformation, prove that F*(vp) = F(v)F(p).

6. (a) Give an example to demonstrate that a one-to-one and onto
mapping need not be a diffeomorphism. (Hint: Take m = n = 1.)
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(b) Prove that if a one-to-one and onto mapping F: Rn Æ Rn is regular,
then it is a diffeomorphism.

7. Prove that a mapping F: Rn Æ Rm preserves directional derivatives in this
sense: If vp is a tangent vector to Rn and g is a differentiable function on Rm,
then F*(vp)[g] = vp[g(F )].

8. In the definition of tangent map (Def. 7.4), the straight line t Æ p + tv
can be replaced by any curve a with initial velocity vp.

9. Let F: Rn Æ Rm and G: Rm Æ Rp be mappings. Prove:
(a) Their composition GF: Rn Æ Rp is a (differentiable) mapping. (Take 
m = p = 2 for simplicity.)
(b) (GF )* = G*F*. (Hint: Use the preceding exercise.)
This concise formula is the general chain rule. Unless dimensions are small,
it becomes formidable when expressed in terms of Jacobian matrices.
(c) If F is a diffeomorphism, then so is its inverse mapping F -1.

10. Show (in two ways) that the map F: R2 Æ R2 such that F(u, v) =
(veu, 2u) is a diffeomorphism:

(a) Prove that it is one-to-one, onto, and regular;
(b) Find a formula for its inverse F -1: R2 Æ R2 and observe that F -1 is dif-
ferentiable. Verify the formula by checking that both F F -1 and F -1 F are
identity maps.

1.8 Summary

Starting from the familiar notion of real-valued functions and using linear
algebra at every stage, we have constructed a variety of mathematical objects.
The basic notion of tangent vector led to vector fields, which dualized 
to 1-forms—which in turn led to arbitrary differential forms. The notions 
of curve and differentiable function were generalized to that of a mapping 
F: Rn Æ Rm.

Then, starting from the usual notion of the derivative of a real-valued func-
tion, we proceeded to construct appropriate differentiation operations for
these objects: the directional derivative of a function, the exterior derivative
of a form, the velocity of a curve, the tangent map of a mapping. These oper-
ations all reduced to (ordinary or partial) derivatives of real-valued coordi-
nate functions, but it is noteworthy that in most cases the definitions of these
operations did not involve coordinates. (This could be achieved in all cases.)
Generally speaking, these differentiation operations all exhibited in one form
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or another the characteristic linear and Leibnizian properties of ordinary 
differentiation.

Most of these concepts are probably already familiar to the reader, at 
least in special cases. But we now have careful definitions and a catalogue of
basic properties that will enable us to begin the exploration of differential
geometry.
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Chapter 2

Frame Fields

43

Roughly speaking, geometry begins with the measurement of distances and
angles. We shall see that the geometry of Euclidean space can be derived from
the dot product, the natural inner product on Euclidean space.

Much of this chapter is devoted to the geometry of curves in R3. We
emphasize this topic not only because of its intrinsic importance, but also
because the basic method used to investigate curves has proved effective
throughout differential geometry. A curve in R3 is studied by assigning at each
point a certain frame—that is, set of three orthogonal unit vectors. The rate
of change of these vectors along the curve is then expressed in terms of the
vectors themselves by the celebrated Frenet formulas (Theorem 3.2). In a real
sense, the theory of curves in R3 is merely a corollary of these fundamental
formulas.

Later on we shall use this “method of moving frames” to study a surface
in R3. The general idea is to think of a surface as a kind of two-dimensional
curve and follow the Frenet approach as closely as possible. To carry out this
scheme we shall need the generalization (Theorem 7.2) of the Frenet formu-
las devised by E. Cartan. It was Cartan who, in the early 1900s, first realized
the full power of this method not only in differential geometry but also in a
variety of related fields.

2.1 Dot Product

We begin by reviewing some basic facts about the natural inner product on
the vector space R3.



1.1 Definition The dot product of points p = ( p1, p2, p3) and q = (q1, q2,
q3) in R3 is the number

The dot product is an inner product since it has the following three 
properties:

(1) Bilinearity:

(2) Symmetry: p • q = q • p.
(3) Positive definiteness: p • p � 0, and p • p = 0 if and only if p = 0.
(Here p, q, and r are arbitrary points of R3, and a and b are numbers.)

The norm of a point p = ( p1, p2, p3) is the number

The norm is thus a real-valued function on R3; it has the fundamental 
properties � p + q � � � p � + � q � and � ap � = | a | � p �, where | a | is the
absolute value of the number a.

In terms of the norm we get a compact version of the usual distance
formula in R3.

1.2 Definition If p and q are points of R3, the Euclidean distance from 
p to q is the number

In fact, since

expansion of the norm gives the well-known formula (Fig. 2.1)

Euclidean distance may be used to give a more precise definition of open
sets (Chapter 1, Section 1). First, if p is a point of R3 and e > 0 is a number,
the e neighborhood Ne of p in R3 is the set of all points q of R3 such that d(p,
q) < e. Then a subset O of R3 is open provided that each point of O has an e
neighborhood that is entirely contained in O. In short, all points near enough
to a point of an open set are also in the set. This definition is valid with R3

replaced by Rn—or indeed any set furnished with a reasonable distance function.
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We saw in Chapter 1 that for each point p of R3 there is a canonical iso-
morphism v Æ vp from R3 onto the tangent space Tp(R3) at p. These isomor-
phisms lie at the heart of Euclidean geometry—using them, the dot product
on R3 itself may be transferred to each of its tangent spaces.

1.3 Definition The dot product of tangent vectors vp and wp at the same
point of R3 is the number vp • wp = v • w.

For example, (1, 0, -1)p • (3, -3, 7)p = 1(3) + 0(-3) + (-1)7 = -4. Evidently
this definition provides a dot product on each tangent space Tp(R3) with the
same properties as the original dot product on R3. In particular, each tangent
vector vp to R3 has norm (or length) � vp � = � v �.

A fundamental result of linear algebra is the Schwarz inequality | v • w |
� � v � � w �. This permits us to define the cosine of the angle J between v
and w by the equation (Fig. 2.2).

Thus the dot product of two vectors is the product of their lengths times the
cosine of the angle between them. (The angle J is not uniquely determined
unless further restrictions are imposed, say 0 � J � p.)

In particular, if J = p/2, then v • w = 0. Thus we shall define two vectors
to be orthogonal provided their dot product is zero. A vector of length 1 is
called a unit vector.

1.4 Definition A set e1, e2, e3 of three mutually orthogonal unit vectors
tangent to R3 at p is called a frame at the point p.

Thus e1, e2, e3 is a frame if and only if

e e e e e e

e e e e e e

1 1 2 2 3 3

1 2 1 3 2 3

1

0

• • •

• • • .

= = =

= = =

,

v w v w• cos .= J
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By the symmetry of the dot product, the second row of equations is, of
course, the same as

Using index notation, all nine equations may be concisely expressed as 
ei • ej = dij for 1 � i j � 3, where dij is the Kronecker delta (0 if i π j, 1 if
i = j). For example, at each point p of R3, the vectors U1(p), U2(p), U3(p) of
Definition 2.4 in Chapter 1 constitute a frame at p.

1.5 Theorem Let e1, e2, e3 be a frame at a point p of R3. If v is any tangent
vector to R3 at p, then (Fig. 2.3)

Proof. First we show that the vectors e1, e2, e3 are linearly independent.
Suppose aiei = 0. Then

where all sums are over i = 1, 2, 3. Thus

as required. Now, the tangent space Tp(R3) has dimension 3, since it is lin-
early isomorphic to R3. Thus by a well-known theorem of linear algebra,
the three independent vectors e1, e2, e3 form a basis for Tp(R3). Hence for
each vector v there are three (unique) numbers c1, c2, c3 such that

But

v e e e• •j i i j i ij jc c c= ( ) = =Â Â d ,

v e= Â ci i .

a a a1 2 3 0= = = ,

0 = ( ) = = =Â Â Âa a a ai i j i i j i ij je e e e• • d ,

Â

v v e e v e e v e e= ( ) + ( ) + ( )• • • .1 1 2 2 3 3

e e e e e e2 1 3 1 3 2 0• • • .= = =
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and thus

◆

This result (valid in any inner-product space) is one of the great labor-
saving devices in mathematics. For to find the coordinates of a vector v with
respect to an arbitrary basis, one must in general solve a set of nonhomoge-
neous linear equations, a task that even in dimension 3 is not always entirely
trivial. But the theorem shows that to find the coordinates of v with respect
to a frame (that is, an orthonormal basis) it suffices merely to compute the
three dot products v • e1, v • e2, v • e3. We call this process orthonormal expan-
sion of v in terms of the frame e1, e2, e3. In the special case of the natural
frame U1(p), U2(p), U3(p), the identity

is an orthonormal expansion, and the dot product is defined in terms of these
Euclidean coordinates by If we use instead an arbitrary frame
e1, e2, e3, then each vector v has new coordinates ai = v • ei relative to this
frame, but the dot product is still given by the same simple formula

since

When applied to more complicated geometric situations, the advantage of
using frames becomes enormous, and this is why they appear so frequently
throughout this book.

The notion of frame is very close to that of orthogonal matrix.

1.6 Definition Let e1, e2, e3 be a frame at a point p of R3. The 3 ¥ 3 matrix
A whose rows are the Euclidean coordinates of these three vectors is called
the attitude matrix of the frame.

Explicitly, if
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then

Thus A does describe the “attitude” of the frame in R3, although not its point
of application.

Evidently the rows of A are orthonormal, since

By definition, this means that A is an orthogonal matrix.
In terms of matrix multiplication, these equations may be written 

A tA = I, where I is the 3 ¥ 3 identity matrix and tA is the transpose of A:

It follows by a standard theorem of linear algebra that tAA = I, so that 
tA = A-1, the inverse of A.

There is another product on R3, closely related to the wedge product of 1-
forms and second in importance only to the dot product. We shall transfer it
immediately to each tangent space of R3.

1.7 Definition If v and w are tangent vectors to R3 at the same point p,
then the cross product of v and w is the tangent vector

This formal determinant is to be expanded along its first row. For example,
if v = (1, 0, -1)p and w = (2, 2, -7)p, then

Familiar properties of determinants show that the cross product v ¥ w is
linear in v and in w, and satisfies the alternation rule
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Hence, in particular, v ¥ v = 0. The geometric usefulness of the cross product
is based mostly on this fact:

1.8 Lemma The cross product v ¥ w is orthogonal to both v and w, and
has length such that

Proof. Let Then the dot product v • (v ¥ w) is just
But by the definition of cross product, the Euclidean coordinates

c1, c2, c3 of v ¥ w are such that

This determinant is zero, since two of its rows are the same; thus v ¥ w is
orthogonal to v, and similarly, to w.

Rather than use tricks to prove the length formula, we give a brute-force
computation. Now,

On the other hand,

and expanding these squares gives the same result as above. ◆

A more intuitive description of the length of a cross product is

where 0 � J � p is the smaller of the two angles from v to w. The direction
of v ¥ w on the line orthogonal to v and w is given, for practical purposes,
by this “right-hand rule”: If the fingers of the right hand point in the 
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direction of the shortest rotation of v to w, then the thumb points in the
direction of v ¥ w (Fig. 2.4).

Combining the dot and cross product, we get the triple scalar product,
which assigns to any three vectors u, v, w the number u • v ¥ w (Exercise 4).
Parentheses are unnecessary: u • (v ¥ w) is the only possible meaning.

Exercises

1. Let v = (1, 2, -1) and w = (-1, 0, 3) be tangent vectors at a point of R3.
Compute:

(a) v • w. (b) v ¥ w.
(c) v/� v �, w/� w �. (d) � v ¥ w �.
(e) the cosine of the angle between v and w.

2. Prove that Euclidean distance has the properties
(a) d(p, q) � 0; d(p, q) = 0 if and only if p = q,
(b) d(p, q) = d(q, p),
(c) d(p, q) + d(q, r) � d(p, r), for any points p, q, r in R3.

3. Prove that the tangent vectors

constitute a frame. Express v = (6, 1, -1) as a linear combination of these
vectors. (Check the result by direct computation.)

4. Let u = (u1, u2, u3), v = (v1, v2, v3), w = (w1, w2, w3). Prove that

(a) u v w• .¥ =
u u u

v v v

w w w
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1 2 3

e e e1 2 3
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6
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(b) u • v ¥ w π 0 if and only if u, v, and w are linearly independent.
(c) If any two vectors in u • v ¥ w are reversed, the product changes sign.
(d) u • v ¥ w = u ¥ v • w.

5. Prove that v ¥ w π 0 if and only if v and w are linearly independent, and
show that � v ¥ w � is the area of the parallelogram with sides v and w.

6. If e1, e2, e3 is a frame, show that

Deduce that any 3¥3 orthogonal matrix has determinant ±1.

7. If u is a unit vector, then the component of v in the u direction is

Show that v has a unique expression v = v1 + v2, where v1 • v2 = 0 and v1 is
the component of v in the u direction.

8. Prove: The volume of the parallelepiped with sides u, v, w is ±u • v ¥ w
(Fig. 2.5). (Hint: Use the indicated unit vector e = v ¥ w/� v ¥ w �.)

9. Prove, using e-neighborhoods, that each of the following subsets of R3

is open:
(a) All points p such that � p � < 1.
(b) All p such that p3 > 0. (Hint: | pi - qi | � d(p, q).)

10. In each case, let S be the set of all points p that satisfy the given con-
dition. Describe S, and decide whether it is open.

(a) p1
2 + p2

2 + p3
2 = 1. (b) p3 π 0.

(c) p1 = p2 π p3. (d) p1
2 + p2

2 < 9.

11. If f is a differentiable function on R3, show that the gradient

— =
∂
∂Âf

f
x

U
i

i

v u u v u• cos .( ) = J

e e e1 2 3 1• .¥ = ±
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(Ex. 8 of Sec. 1.6) has the following properties:
(a) v [ f ] = (df )(v) = v • (—f )(p) for any tangent vector at p.

(b) The norm of (—f ) (p) is the maximum
of the directional derivatives u[ f ] for all unit vectors at p. Furthermore, if
(—f )(p) π 0, the unit vector for which the maximum occurs is

The notations grad f, curl V, and div V (in the exercise referred to) are
often replaced by —f, — ¥ V, and — • V, respectively.

12. Angle functions. Let f and g be differentiable real-valued functions on
an interval I. Suppose that f 2 + g2 = 1 and that J0 is a number such that 
f(0) = cosJ0, g(0) = sinJ0. If J is the function such that

prove that

Hint: We want ( f - cosJ)2 + (g - sinJ)2 = 0, so show that its derivative is
zero.

The point of this exercise is that J is a differentiable function, unambigu-
ously defined on the whole interval I.

2.2 Curves

We begin the geometric study of curves by reviewing some familiar defini-
tions. Let a: I Æ R3 be a curve. In Chapter 1, Section 4, we defined the veloc-
ity vector a ¢(t) of a at t. Now we define the speed of a at t to be the length
v(t) = � a ¢(t) � of the velocity vector. Thus speed is a real-valued function on
the interval I. In terms of Euclidean coordinates a = (a1, a2, a3), we have

Hence the speed function v of a is given by the usual formula

In physics, the distance traveled by a moving point is determined by inte-
grating its speed with respect to time. Thus we define the arc length of a from
t = a to t = b to be the number

v
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Substituting the formula for � a¢ � given above, we get the usual formula
for arc length. This length involves only the restriction of a (defined on 
some open interval) to the closed interval [a, b]: a � t � b. Such a restriction
s: [a, b] Æ R3 is called a curve segment, and its length is denoted by 
L(s). Note that the velocity of s is well defined at the endpoints a and b of
[a, b].

Sometimes one is interested only in the route followed by a curve 
and not in the particular speed at which it traverses its route. One way 
to ignore the speed of a curve a is to reparametrize to a curve b that has 
unit speed � b¢ � = 1. Then b represents a “standard trip” along the route 
of a.

2.1 Theorem If a is a regular curve in R3, then there exists a reparame-
trization b of a such that b has unit speed.

Proof. Fix a number a in the domain I of a: I Æ R3, and consider the
arc length function

(The resulting reparametrization is said to be based at t = a.) Thus the
derivative of the function s = s(t) is the speed function v = � a ¢ � of
a. Since a is regular, by definition a ¢ is never zero; hence > 0. By 
a standard theorem of calculus, the function s has an inverse function 
t = t(s), whose derivative at s = s(t) is the reciprocal of at 
t = t(s). In particular, > 0.

Now let b be the reparametrization b(s) = a(t(s)) of a. We assert that
b has unit speed. In fact, by Lemma 4.5 of Chapter 1,

Hence, by the preceding remarks, the speed of b is

◆

We shall use the notation of this proof frequently in later work. The unit-
speed curve b is sometimes said to have arc-length parametrization, since the
arc length of b from s = a to s = b (a < b) is just b - a.
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For example, consider the helix a in Example 4.2 of Chapter 1. Since 
a(t) = (acos t, asin t, bt), the velocity a ¢ is given by the formula

Hence

Thus a has constant speed c = � a ¢ � = (a2 + b2)1/2. If we measure arc length
from t = 0, then

Hence, t(s) = s/c. Substituting in the formula for a, we get the unit-speed 
reparametrization

It is easy to check directly that � b¢(s) � = 1 for all s.
A reparametrization a(h) of a curve a is orientation-preserving if h¢ ≥ 0 and

orientation-reversing if h¢ £ 0. In the latter case, a(h) still follows the route of
a but in the opposite direction. By definition, a unit-speed reparametrization
is always orientation-preserving since > 0 for a regular curve.

In the theory of curves we will frequently reparametrize regular curves to
obtain unit speed; however, it is rarely possible to do this in practice. The
problem is basic calculus: Even when the coordinate functions of the curve
are rather simple, the speed function cannot usually be integrated explicitly—
at least in terms of familiar functions.

The general notion of vector field (Definition 2.3 of Chapter 1) can be
adapted to curves as follows.

2.2 Definition A vector field Y on curve a: I Æ R3 is a function 
that assigns to each number t in I a tangent vector Y(t) to R3 at the point
a(t).

We have already met such vector fields: For any curve a, its velocity a ¢ evi-
dently satisfies this definition. Note that unlike a ¢, arbitrary vector fields on
a need not be tangent to a, but may point in any direction (Fig. 2.6).

The properties of vector fields on curves are analogous to those of vector
fields on R3. For example, if Y is a vector field on a: I Æ R3, then for each t
in I we can write
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We have thus defined real-valued functions y1, y2, y3 on I, called the Euclid-
ean coordinate functions of Y. These will always be assumed to be differen-
tiable. Note that the composite function t Æ Ui (a(t)) is a vector field on a.
Where it seems safe to do so, we shall often write merely Ui instead of Ui(a(t)).

The operations of addition, scalar multiplication, dot product, and cross
product of vector fields (on the same curve) are all defined in the usual point-
wise fashion. Thus if

and f(t) = (t + 1)/t, we obtain the vector fields

and the real-valued function

To differentiate a vector field on a one simply differentiates its Euclidean
coordinate functions, thus obtaining a new vector field on a. Explicitly, if

then Thus, for Y as above, we get
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In particular, the derivative a≤ of the velocity a ¢ of a is called the accelera-
tion of a. Thus if a = (a1, a2, a3), the acceleration a≤ is the vector field

on a. By contrast with velocity, acceleration is generally not tangent to the
curve.

As we mentioned earlier, in whatever form it appears, differentiation always
has suitable linearity and Leibnizian properties. In the case of vector fields
on a curve, it is easy to prove the linearity property

(a and b numbers) and the Leibnizian properties

If the function Y • Z is constant, the last formula shows that

This observation will be used frequently in later work. In particular, if Y has
constant length � Y �, then Y and Y ¢ are orthogonal at each point, since 
� Y �2 = Y • Y constant implies 2Y • Y ¢ = 0.

Recall that tangent vectors are parallel if they have the same vector parts.
We say that a vector field Y on a curve is parallel provided all its (tangent vector)
values are parallel. In this case, if the common vector part is (c1, c2, c3), then

Thus parallelism for a vector field is equivalent to the constancy of its 
Euclidean coordinate functions.

Vanishing of derivatives is always important in calculus; here are three
simple cases.

2.3 Lemma (1) A curve a is constant if and only if its velocity is zero,
a ¢ = 0.

(2) A nonconstant curve a is a straight line if and only if its acceleration
is zero, a≤ = 0.

(3) A vector field Y on a curve is parallel if and only if its derivative is
zero, Y ¢ = 0.

Proof. In each case it suffices to look at the Euclidean coordinate func-
tions. For example, we shall prove (2). If a = (a1, a2, a3), then

Y t c c c cU t
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Thus a≤ = 0 if and only if each . By elementary calculus, this
is equivalent to the existence of constants pi and qi such that

Thus a(t) = p + tq, and a is a straight line as defined in Example 4.2 of
Chapter 1. (Note that nonconstancy implies q π 0.) ◆

Exercises

1. For the curve a(t) = (2t, t2, t3/3),
(a) find the velocity, speed, and acceleration for arbitrary t, and at t = 1;
(b) find the arc length function s = s(t) (based at t = 0), and determine
the arc length of a from t = -1 to t = +1.

2. Show that a curve has constant speed if and only if its acceleration is
everywhere orthogonal to its velocity.

3. Show that the curve a(t) = (cosh t, sinh t, t) has arc length function
sinh t, and find a unit-speed reparametrization of a.

4. Consider the curve a(t) = (2t, t2, log t) on I: t > 0. Show that this curve
passes through the points p = (2, 1, 0) and q = (4, 4, log2), and find its arc
length between these points.

5. Suppose that b1 and b2 are unit-speed reparametrizations of the same
curve a. Show that there is a number s0 such that b2(s) = b1(s + s0) for all s.
What is the geometric significance of s0?

6. Let Y be a vector field on the helix a(t) = (cos t, sin t, t). In each of the 
following cases, express Y in the form yiUi:

(a) Y(t) is the vector from a(t) to the origin of R3.
(b) Y(t) = a ¢(t) - a≤(t).
(c) Y(t) has unit length and is orthogonal to both a ¢(t) and a ≤(t).
(d) Y(t) is the vector from a(t) to a(t + p).

7. A reparametrization a(h): [c, d ] Æ R3 of a curve segment a: [a, b] Æ R3

is monotone provided either

(i) h¢ ≥ 0, h(c) = a, h(d) = b or (ii) h¢ � 0, h(c) = b, h(d) = a.

Prove that monotone reparametrization does not change arc length.
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8. Let Y be a vector field on a curve a. If a(h) is a reparametrization of a,
show that the reparametrization Y(h) is a vector field on a(h), and prove the
chain rule Y(h)¢ = h¢Y ¢(h).

9. (Numerical integration.) The curve segments

defined on 0 � t � p, run from the origin 0 to (0, p2, 0). Which is shorter?
(See Integration in the Appendix.)

10. Let a, b: I Æ R3 be curves such that a ¢(t) and b¢(t) are parallel (same
Euclidean coordinates) at each t. Prove that a and b are parallel in the sense
that there is a point p in R3 such that b(t) = a(t) + p for all t.

11. Prove that a straight line is the shortest distance between two points in
R3. Use the following scheme; let a: [a, b] Æ R3 be an arbitrary curve segment
from p = a(a) to q = a(b). Let u = (q - p)/� q - p �.

(a) If s is a straight line segment from p to q, say

show that L(s) = d(p, q).
(b) From � a ¢ � � a ¢ • u, deduce L(a) � d(p, q), where L(a) is the length
of a and d is Euclidean distance.
(c) Furthermore, show that if L(a) = d(p, q), then (but for parametriza-
tion) a is a straight line segment. (Hint: write a ¢ = (a ¢ • u)u + Y, where 
Y • u = 0.)

2.3 The Frenet Formulas

We now derive mathematical measurements of the turning and twisting of a
curve in R3. Throughout this section we deal only with unit-speed curves; in
the next we extend the results to arbitrary regular curves.

Let b: I Æ R3 be a unit-speed curve, so � b ¢ (s) � = 1 for each s in I.
Then T = b¢ is called the unit tangent vector field on b. Since T has constant
length 1, its derivative T ¢ = b≤ measures the way the curve is turning in R3.
We call T ¢ the curvature vector field of b. Differentiation of T • T = 1 gives
2T ¢ • T = 0, so T ¢ is always orthogonal to T, that is, normal to b.

The length of the curvature vector field T ¢ gives a numerical measurement
of the turning of b. The real-valued function k such that k(s) = � T ¢ (s) � for

s t t t t( ) = -( ) + ( )1 0 1p q � � ,

a bt t t t t t t t t t t( ) = ( ) ( ) = +( )( )sin cos sin sin cos,  ,  , , , ,2 2 2 22 1
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all s in I is called the curvature function of b. Thus k � 0, and the larger k
is, the sharper the turning of b.

To carry this analysis further, we impose the restriction that k is never zero
so k > 0. The unit-vector field N = T ¢/k on b then tells the direction in which b
is turning at each point. N is called the principal normal vector field of b (Fig.
2.7). The vector field B = T ¥ N on b is called the binormal vector field of b.

3.1 Lemma Let b be a unit-speed curve in R3 with k > 0. Then the three
vector fields T, N, and B on b are unit vector fields that are mutually orthog-
onal at each point. We call T, N, B the Frenet frame field on b.

Proof. By definition � T � = 1. Since k = � T ¢ � > 0,

We saw above that T and N are orthogonal—that is, T • N = 0. Then by
applying Lemma 1.8 at each point, we conclude that � B � = 1, and B is
orthogonal to both T and N. ◆

In summary, we have T = b¢, N = T ¢/k, and B = T ¥ N, satisfying T • T =
N • N = B • B = 1, with all other dot products zero.

The key to the successful study of the geometry of a curve b is to use its
Frenet frame field T, N, B whenever possible, instead of the natural frame
field U1, U2, U3. The Frenet frame field of b is full of information about b,
whereas the natural frame field contains none at all.

The first and most important use of this idea is to express the derivatives
T ¢, N¢, B¢ in terms of T, N, B. Since T = b¢, we have T ¢ = b≤ = kN. Next
consider B¢. We claim that B¢ is, at each point, a scalar multiple of N. To
prove this, it suffices by orthonormal expansion to show that B¢ • B = 0 and
B¢ • T = 0. The former holds since B is a unit vector. To prove the latter, dif-
ferentiate B • T = 0, obtaining B¢ • T + B • T ¢ = 0; then

¢ = - ¢ = - =B T B T B N• • • .k 0

N T= ( ) ¢ =1 1k .
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Thus we can now define the torsion function t of the curve b to be the real-
valued function on the interval I such that B¢ = -tN. (The minus sign is tra-
ditional.) By contrast with curvature, there is no restriction on the values of
t—it may be positive, negative, or zero at various points of I. We shall
presently show that t does measure the torsion, or twisting, of the curve b.

3.2 Theorem (Frenet formulas). If b: I Æ R3 is a unit-speed curve with
curvature k > 0 and torsion t, then

Proof. As we saw above, the first and third formulas are essentially just
the definitions of curvature and torsion. To prove the second, we use ortho-
normal expansion to express N¢ in terms of T, N, B:

These coefficients are easily found. Differentiating N • T = 0, we get 
N¢ • T + N • T ¢ = 0; hence

As usual, N¢ • N = 0, since N is a unit vector field. Finally,

◆

3.3 Example We compute the Frenet frame T, N, B and the curvature
and torsion functions of the unit-speed helix

where c = (a2 + b2)1/2 and a > 0. Now
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Thus

Since T ¢ = kN, we get

Note that regardless of what values a and b have, N always points straight in
toward the axis of the cylinder on which b lies (Fig. 2.8).

Applying the definition of cross product to B = T ¥ N gives

It remains to compute torsion. Now,

and by definition, B¢ = -tN. Comparing the formulas for B¢ and N, we con-
clude that

So the torsion of the helix is also constant.
Note that when the parameter b is zero, the helix reduces to a circle of

radius a. The curvature of this circle is k = 1/a (so the smaller the radius, the
larger the curvature), and the torsion is identically zero.

This example is a very special one—in general (as the examples in the exer-
cises show) neither the curvature nor the torsion functions of a curve need
be constant.
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3.4 Remark We have emphasized all along the distinction between a
tangent vector and a point of R3. However, Euclidean space has, as we have
seen, the remarkable property that given a point p, there is a natural one-to-
one correspondence between points (v1, v2, v3) and tangent vectors (v1, v2, v3)p

at p. Thus one can transform points into tangent vectors (and vice versa) by
means of this canonical isomorphism. In the next two sections particularly,
it will often be convenient to switch quietly from one to the other without
change of notation. Since corresponding objects have the same Euclidean coor-
dinates, this switching can have no effect on scalar multiplication, addition,
dot products, differentiation, or any other operation defined in terms of
Euclidean coordinates.

Thus a vector field Y = ( y1, y2, y3)b on a curve b becomes itself a curve ( y1,
y2, y3) in R3. In particular, if Y is parallel, its Euclidean coordinate functions
are constant, so Y is identified with a single point of R3.

A plane in R3 can be described as the union of all the perpendiculars to 
a given line at a given point. In vector language then, the plane through p
orthogonal to q π 0 consists of all points r in R3 such that (r - p) • q = 0. By
the remark above, we may picture q as a tangent vector at p as shown in 
Fig. 2.9.

We can now give an informative approximation of a given curve near an
arbitrary point on the curve. The goal is to show how curvature and torsion
influence the shape of the curve. To derive this approximation we use a Taylor
approximation of the curve—and express this in terms of the Frenet frame
at the selected point.

For simplicity, we shall consider the unit-speed curve b = (b1, b2, b3) near
the point b(0). For s small, each coordinate bi(s) is closely approximated by
the initial terms of its Taylor series:

b b
b b b
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Hence

But b¢(0) = T0, and b≤(0) = k0N0, where the subscript indicates evaluation at
s = 0, and we assume k0 π 0. Now

Thus by the Frenet formula for N¢, we get

Finally, substitute these derivatives into the approximation of b(s) given
above, and keep only the dominant term in each component (that is, the one
containing the smallest power of s). The result is

Denoting the right side by b̂(s), we obtain a curve b̂ called the Frenet approxi-
mation of b near s = 0. We emphasize that b has a different Frenet approx-
imation near each of its points; if 0 is replaced by an arbitrary number s0,
then s is replaced by s - s0, as usual in Taylor expansions.

Let us now examine the Frenet approximation given above. The first term
in the expression for b̂ is just the point b(0). The first two terms give the
tangent line s Æ b(0) + sT0 of b at b(0)—the best linear approximation of b
near b(0). The first three terms give the parabola

which is the best quadratic approximation of b near b(0). Note that this
parabola lies in the plane through b(0) orthogonal to B0, the osculating plane
of b at b(0). This parabola has the same shape as the parabola y = k0x2/2 in
the xy plane, and is completely determined by the curvature k0 of b at s = 0.

Finally, the torsion t0, which appears in the last and smallest term of b̂ ,
controls the motion of b orthogonal to its osculating plane at b(0), as shown
in Fig. 2.10.

On the basis of this discussion, it is a reasonable guess that if a unit-speed
curve has curvature identically zero, then it is a straight line. In fact, this follows
immediately from (2) of Lemma 2.3, since k = � T ¢ � = � b≤ �, so that k = 0 
if and only if b≤ = 0. Thus curvature does measure deviation from 
straightness.
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A plane curve in R3 is a curve that lies in a single plane of R3. Evidently a
plane curve does not twist in as interesting a way as even the simple helix in
Example 3.3. The discussion above shows that for s small the curve b tends
to stay in its osculating plane at b(0); it is t0 π 0 that causes b to twist out of
the osculating plane. Thus if the torsion of b is identically zero, we may well
suspect that b never leaves this plane.

3.5 Corollary Let b be a unit-speed curve in R3 with k > 0. Then b is a
plane curve if and only if t = 0.

Proof. Suppose b is a plane curve. Then by the remarks above, there exist
points p and q such that (b(s) - p) • q = 0 for all s. Differentiation yields

Thus q is always orthogonal to T = b¢ and N = b≤/k. But B is also orthog-
onal to T and N, so, since B has unit length, B = ±q/�q�. Thus B¢ = 0, and
by definition t = 0 (Fig. 2.11).

Conversely, suppose t = 0. Thus B¢ = 0; that is, B is parallel and may
thus be identified (by Remark 3.4) with a point of R3. We assert that b lies
in the plane through b(0) orthogonal to B. To prove this, consider the real-
valued function

f s s B s( ) = ( ) - ( )( )b b 0 • .for all

¢( ) = ¢¢( ) =b bs s s• • .q q 0 for all

64 2. Frame Fields

FIG. 2.10



Then

But obviously, f(0) = 0, so f is identically zero. Thus

which shows that b lies entirely in this plane orthogonal to the (parallel)
binormal of b. ◆

We saw at the end of Example 3.3 that a circle of radius a has curvature
1/a and torsion zero. Furthermore, the formula given there for the principal
normal shows that for a circle, N always points toward its center. This sug-
gests how to prove the following converse.

3.6 Lemma If b is a unit-speed curve with constant curvature k > 0 and
torsion zero, then b is part of a circle of radius 1/k.

Proof. Since t = 0, b is a plane curve. What we must now show is that
every point of b is at distance 1/k from some fixed point—which will thus
be the center of the circle. Consider the curve g = b + (1/k)N. Using the
hypothesis on b, and (as usual) a Frenet formula, we find

Hence the curve g is constant; that is, b(s) + (1/k)N(s) has the same value,
say c, for all s (see Fig. 2.12). But the distance from c to b(s) is
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In principle, every geometric problem about curves can be solved by means
of the Frenet formulas. In simple cases it may be just enough to record the
data of the problem in convenient form, differentiate, and use the Frenet for-
mulas. For example, suppose b is a unit-speed curve that lies entirely in the
sphere of radius a centered at the origin of R3. To stay in the sphere, b
must curve; in fact it is a reasonable guess that the minimum possible curva-
ture occurs when b is on a great circle of . Such a circle has radius a, so
we conjecture that a spherical curve b has curvature k � 1/a, where a is the
radius of its sphere.

To prove this, observe that since every point of has distance a from the
origin, we have b • b = a2. Differentiation yields 2b¢ • b = 0, that is, b • T =
0. Another differentiation gives b¢ • T + b • T ¢ = 0, and by using a Frenet
formula we get T • T + kb • N = 0; hence

By the Schwarz inequality,

and since k � 0 we obtain the required result:

Continuation of this procedure leads to a necessary and sufficient condition
(expressed in terms of curvature and torsion) for a curve to be spherical, that
is, lie on some sphere in R3 (Exercise 10).

Exercises

1. Compute the Frenet apparatus k, t, T, N, B of the unit-speed curve 
b(s) = (4/5 coss, 1 - sins, -3/5 coss). Show that this curve is a circle; find its
center and radius.

2. Consider the curve

defined on I: -1 < s < 1. Show that b has unit speed, and compute its Frenet
apparatus.
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3. For the helix in Example 3.3, check the Frenet formulas by direct sub-
stitution of the computed values of k, t, T, N, B.

4. Prove that

(A formal proof uses properties of the cross product established in the Exer-
cises of Section 1—but one can recall these formulas by using the right-hand
rule given at the end of that section.)

5. If A is the vector field tT + kB on a unit-speed curve b, show that the
Frenet formulas become

6. A unit-speed parametrization of a circle may be written

where ei • ej = dij.
If b is a unit-speed curve with k(0) > 0, prove that there is one and only

one circle g that approximates b near b(0) in the sense that

Show that g lies in the osculating plane of b at b(0) and find its center c and
radius r (see Fig. 2.13). The circle g is called the osculating circle and c the
center of curvature of b at b(0). (The same results hold when 0 is replaced by
any number s.)
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7. If a and a reparametrization = a(h) are both unit-speed curves, show
that

(a) h(s) = ± s + s0 for some number s0;
(b) = ±T(h),

= N(h), = k (h), t = t (h),
= ±B(h),

where the sign (±) is the same as that in (a), and we assume k > 0. Thus even
in the orientation-reversing case, the principal normals N and still point
in the same direction.

8. Curves in the plane. For a unit-speed curve b(s) = (x(s), y(s)) in R2, the
unit tangent is T = b¢ = (x¢, y¢) as usual, but the unit normal N is defined by
rotating T through +90°, so N = (-y¢, x¢). Thus T ¢ and N are collinear, and
the plane curvature k̃ of b is defined by the Frenet equation T ¢ = k̃N.

(a) Prove that k̃ = T ¢ • N and N¢ = -k̃T.
(b) The slope angle j(s) of b is the differentiable function such that

(The existence of j derives from Ex. 12 of Sec. 1.) Show that k̃ = j¢.
(c) Find the curvature k̃ of the following plane curves.

(i) (rcos , rsin ), counterclockwise circle.

(ii) (rcos(- ), rsin(- )), clockwise circle.

(d) Show that if k̃ does not change sign, then |k̃ | is the usual R3 curvature
k. (For such comparisons we can always regard R2 as, say, the xy plane 
in R3.)

9. Let b̃ be the Frenet approximation of a unit-speed curve b with t π 0
near s = 0.

If, say, the B0 component of b is removed, the resulting curve is the orthog-
onal projection of b̃ in the T0N0 plane. It is the view of b ª b̃ that one gets
by looking toward b(0) = b̃ (0) directly along the vector B0.

Sketch the general shape of the orthogonal projections of b̃ near s = 0 in
each of the planes T0N0 (osculating plane), T0B0 (rectifying plane), and N0B0

(normal plane). These views of b ª b̃ can be confirmed experimentally using
a bent piece of wire. For computer views, see Exercise 15 of Section 4.

10. Spherical curves. Let a be a unit-speed curve with k > 0, t π 0.
(a) If a lies on a sphere of center c and radius r, show that

a r r s- = - - ¢c N B,
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where r = 1/k and s = 1/t . Thus r2 = r2 + (r¢s)2.

(b) Conversely, if r2 + (r¢s)2 has constant value r2 and r¢ π 0, show that
a lies on a sphere of radius r.
(Hint: For (b), show that the “center curve” g = a + rN + r¢sB—suggested
by (a)—is constant.)

11. Let b, : I Æ R3 be unit-speed curves with nonvanishing curvature and
torsion. If T = , then b and are parallel (Ex. 10 of Sec. 2). If
B = , prove that is parallel to either b or the curve s Æ -b(s).

2.4 Arbitrary-Speed Curves

It is a simple matter to adapt the results of the previous section to the study
of a regular curve a: I Æ R3 that does not necessarily have unit speed. We
merely transfer to a the Frenet apparatus of a unit-speed reparametrization

of a. Explicitly, if s is an arc length function for a as in Theorem 2.1, then

or, in functional notation, a = (s), as suggested by Fig. 2.14. Now if
> 0, t , , , and are defined for as in Section 3, we define for a the

curvature function: k = (s),
torsion function: t = (s),
unit tangent vector field: T = (s),
principal normal vector field: N = (s),
binormal vector field: B = (s).

In general k and are different functions, defined on different intervals.
But they give exactly the same description of the turning of the common route
of a and , since at any point a(t) = (s(t)) the numbers k(t) and (s(t)) arekaa
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by definition the same. Similarly with the rest of the Frenet apparatus; since
only a change of parametrization is involved, its fundamental geometric
meaning is the same as before. In particular, T, N, B is again a frame field 
on a linked to the shape of a as indicated in the discussion of Frenet 
approximations.

For purely theoretical work, this simple transference is often all that is
needed. Data about a converts into data about the unit-speed reparame-
trization ; results about convert to results about a. For example, if a is
a regular curve with t = 0, then by the definition above has = 0; by 
Corollary 3.5, is a plane curve, so obviously a is too.

However, for explicit numerical computations—and occasionally for the
theory as well—this transference is impractical, since it is rarely possible to
find explicit formulas for . (For example, try to find a unit-speed parame-
trization for the curve a(t) = (t, t2, t3).)

The Frenet formulas are valid only for unit-speed curves; they tell the rate
of change of the frame field T, N, B with respect to arc length. However, the
speed v of the curve is the proper correction factor in the general case.

4.1 Lemma If a is a regular curve in R3 with k > 0, then

Proof. Let be a unit-speed reparametrization of a. Then by definition,
T = (s), where s is an arc length function for a. The chain rule as applied
to differentiation of vector fields (Exercise 7 of Section 2) gives

By the usual Frenet equations, . Substituting the function s in this
equation yields

by the definition of k and N in the arbitrary-speed case. Since ds/dt is the
speed function v of a, these two equations combine to yield T¢ = kvN. The
formulas for N¢ and B¢ are derived in the same way. ◆

There is a commonly used notation for the calculus that completely ignores
change of parametrization. For example, the same letter would designate
both a curve a and its unit-speed parametrization , and similarly with thea
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Frenet apparatus of these two curves. Differences in derivatives are handled
by writing, say, dT/dt for T ¢, but dT/ds for either or its reparametrization

(s). If these conventions were used, the proof above would combine the
chain rule dT/dt = (dT/ds) (ds/dt) and the Frenet formula dT/ds = kN to give
dT/dt = kvN.

Only for a constant-speed curve is acceleration always orthogonal to veloc-
ity, since b¢ • b¢ constant is equivalent to (b¢ • b¢)¢ = 2b¢ • b≤ = 0. In the general
case, we analyze velocity and acceleration by expressing them in terms of the
Frenet frame field.

4.2 Lemma If a is a regular curve with speed function v, then the veloc-
ity and acceleration of a are given by (Fig. 2.15.)

Proof. Since a = (s), where s is the arc length function of a, we find,
using Lemma 4.5 of Chapter 1, that

Then a second differentiation yields

where we use Lemma 4.1. ◆

The formula a ¢ = vT is to be expected since a ¢ and T are each tangent 
to the curve and T has a unit length, while � a ¢ � = v. The formula for 
acceleration is more interesting. By definition, a≤ is the rate of change of the

¢¢ = + ¢ = +a k
dv
dt

T vT
dv
dt

T v N2 ,

¢ = ¢( ) = ( ) =a a s
ds
dt

vT s vT.

a

¢ = ¢¢ = +a a kvT
dv
dt

T v N, 2 .

¢T
¢T
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velocity a ¢, and in general both the length and the direction of a ¢ are chang-
ing. The tangential component (dv/dt)T of a≤ measures the rate of change of
the length of a ¢ (that is, of the speed of a). The normal component kv2N mea-
sures the rate of change of the direction of a ¢. Newton’s laws of motion show
that these components may be experienced as forces. For example, in a car
that is speeding up or slowing down on a straight road, the only force one
feels is due to (dv/dt)T. If one takes an unbanked curve at speed v, the result-
ing sideways force is due to kv2N. Here k measures how sharply the road turns;
the effect of speed is given by v2, so 60 miles per hour is four times as unset-
tling as 30.

We now find effectively computable expressions for the Frenet apparatus.

4.3 Theorem Let a be a regular curve in R3. Then

Proof. Since v = � a ¢ � > 0, the formula T = a ¢/�a ¢� is equivalent to 
a ¢ = vT. From the preceding lemma we get

since T ¥ T = 0. Taking norms we find

because � B � = 1, k � 0, and v > 0. Indeed, this equation shows that for
regular curves, � a ¢ ¥ a≤ � > 0 is equivalent to the usual condition k > 0.
(Thus for k > 0, a ¢ and a≤ are linearly independent and determine the oscu-
lating plane at each point, as do T and N.) Then

Since N = B ¥ T is true for any Frenet frame field (Exercise 4 of Section
3), only the formula for torsion remains to be proved.

To find the dot product (a ¢ ¥ a≤) • a� we express everything in terms of
T, N, B. We already know that a ¢ ¥ a≤ = kv3B. Thus, since 0 = T • B =
N • B, we need only find the B component of a�. But

B
v

=
¢ ¥ ¢¢

=
¢ ¥ ¢¢
¢ ¥ ¢¢

a a
k

a a
a a3

.
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where we use Lemma 4.1. Consequently, (a ¢ ¥ a≤) • a � = k2v6t, and since 
� a ¢ ¥ a≤ � = kv3, we have the required formula for t. ◆

The triple scalar product in this formula for t could (by Exercise 4 of
Section 1) also be written a ¢ • a≤ ¥ a�. But we need a ¢ ¥ a≤ anyway, so it is
more efficient to find (a ¢ ¥ a≤) • a�.

4.4 Example We compute the Frenet apparatus of the 3-curve

The derivatives are

Now,

so

Applying the definition of cross product yields

Dotting this vector with itself, we get

Hence

The expressions above for a ¢ ¥ a≤ and a� yield
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It remains only to substitute this data into the formulas in Theorem 4.3, with
N being computed by another cross product. The final results are

Alternatively, we could use the identity in Lemma 1.8 to compute � a ¢ ¥
a≤ � and express

as a determinant by Exercise 4 of Section 1.
To summarize, we now have the Frenet apparatus for an arbitrary regular

curve a, namely, its curvature, torsion, and Frenet frame field. This appara-
tus satisfies the extended Frenet formulas with speed factor v and can be com-
puted by Theorem 4.3. If v = 1, that is, if a is a unit-speed curve, the results
of Section 3 are recovered.

Let us consider some applications of the Frenet formulas. There are a
number of natural ways in which a given curve b gives rise to a new curve 
b̃ whose geometric properties illuminate some aspect of the behavior of b.

For example, the spherical image of a unit-speed curve b is the curve 
s ª T with the same Euclidean coordinates as T = b¢. Geometrically, s is
gotten by moving each T(s) to the origin of R3, as suggested in Fig. 2.16.
Thus s lies on the unit sphere S, and the motion of s represents the turning
of b.
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For instance, if b is the helix in Example 3.3, the formula there for T shows
that

So the spherical image of a helix lies on the circle cut from by the plane 
z = b/c.

Although the original curve b has unit speed, we cannot expect that s
does also. In fact, s = T implies s ¢ = T ¢ = kN, so the speed of s equals the
curvature k of b. Thus to compute the curvature of s, we must use the
extended Frenet formulas in Theorem 4.3. From

we get

By Theorem 4.3 the curvature of the spherical image s is

and thus depends only on the ratio of torsion to curvature for the original
curve b.

Here is a closely related application in which this ratio t/k turns out to be
decisive.

4.5 Definition A regular curve a in R3 is a cylindrical helix provided the
unit tangent T of a has constant angle J with some fixed unit vector u; that
is, T(t) • u = cosJ for all t.

This condition is not altered by reparametrization, so for theoretical pur-
poses we need only deal with a cylindrical helix b that has unit speed. So
suppose b is a unit-speed curve with T • u = cosJ. If we pick a reference
point, say b(0), on b, then the real-valued function

tells how far b(s) has “risen” in the u direction since leaving b(0) (Fig. 2.17).
But

h s s( ) = ( ) - ( )( )b b 0 • u
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so b is rising at a constant rate relative to arc length, and h(s) = s cosJ. If we
shift to an arbitrary parametrization, this formula becomes

where s is the arc length function.
By drawing a line through each point of b in the u direction, we construct

a cylinder C on which b moves in such a way as to cut each such line at con-
stant angle J, as in Fig. 2.18. In the special case when this cylinder is circu-
lar, b is evidently a helix of the type defined in Example 3.3.

It turns out to be quite easy to identify cylindrical helices.

4.6 Theorem A regular curve a with k > 0 is a cylindrical helix if and
only if the ratio t/k is constant.

Proof. It suffices to consider the case where a has unit speed. If a is a
cylindrical helix with T • u = cosJ, then

Since k > 0, we conclude that N • u = 0. Thus for each s, u lies in the plane
determined by T(s) and B(s). Orthonormal expansion yields

u = +cos sin .J JT B

0 = ( )¢ = ¢ =T T N• • • .u u uk

h t s t( ) = ( ) cos J,

dh
ds

T= ¢ = =b J• • cosu u ,
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As usual we differentiate and apply Frenet formulas to obtain

Hence t sinJ = kcosJ, so that t/k has constant value cotJ.
Conversely, suppose that t/k is constant. Choose an angle J such that

cotJ = t/k. If

we find

This parallel vector field U then determines (as in Remark 3.4) a unit vector
u such that T • u = cosJ, so a is a cylindrical helix. ◆

In Exercise 9 this information about cylindrical helices is used to show that
circular helices are characterized by constancy of curvature and torsion (see
also Corollary 5.5 of Chapter 3).

Simple hypotheses on a regular curve in R3 thus have the following effects
(¤ means “if and only if”):

Exercises

Computer commands that produce the Frenet apparatus, k, t, T, N, B, of a
curve are given in the Appendix. Their use is optional in the following 
exercises.

1. For the curve a(t) = (2t, t2, t3/3),
(a) Compute the Frenet apparatus.
(b) Sketch the curve for -4 � t � 4, showing T, N, B at t = 2.
(c) Find the limiting values of T, N, and B as t Æ -• and t Æ •.

2. Express the curvature and torsion of the curve a(t) = (cosh t, sinh t, t)
in terms of arc length s measured from t = 0.

k
t
k t
k t
t k

= ¤
= ¤

> = ¤
> > ¤

π ¤

0

0

0 0

0 0

0

straight line,

plane curve,

const and circle,

const and const circular helix,

const cylindrical helix.

¢ = -( ) =U Nk J t Jcos sin .0

U T B= +cos sinJ J ,

0 = -( )k J t Jcos sin .N
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3. The curve a(t) = (tcos t, tsin t, t) lies on a double cone and passes
through the vertex at t = 0.

(a) Find the Frenet apparatus of a at t = 0.
(b) Sketch the curve for -2p � t � 2p, showing T, N, B at t = 0.

4. Show that the curvature of a regular curve in R3 is given by

5. If a is a curve with constant speed c > 0, show that

where for N, B, t, we assume a≤ never zero, that is, k > 0.

6. (a) If a is a cylindrical helix, prove that its unit vector u (Thm. 4.5) is

and the coefficients here are cosJ and sinJ (for J as in Def. 4.5).
(b) Check (a) for the cylindrical helix in Example 4.2 of Chapter 1.

7. Let a: I Æ R3 be a cylindrical helix with unit vector u. For t0 Œ I, the
curve

is called a cross-sectional curve of the cylinder on which a lies. Prove:
(a) g lies in the plane through a(t0) orthogonal to u.
(b) The curvature of g is k/sin2 J, where k is the curvature of a.

8. Verify that the following curves are cylindrical helices and, for each, find
the unit vector u, angle J, and cross-sectional curve s.

(a) The curve in Exercise 1. (b) The curve in Example 4.4.
(c) The curve in Exercise 2.

9. If a is a curve with k > 0 and t both constant, show that a is a circular
helix.

10. (a) Prove that a curve is a cylindrical helix if and only if its spherical
image is part of a circle.

(b) Sketch the spherical image of the cylindrical helix in Exercise 1. Is it
a complete circle? Find its center.
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11. If a is a curve with k > 0, its central curve a* = a + (1/k)N consists of
all centers of curvature of a (Ex. 6 of Sec. 3). For nonzero numbers a and
b, let bab be the helix in Example 3.3.

(a) Show that the central curve of bab is the helix bâb, where â = -b2/a.
(b) Deduce that the central curve of bâb is the original helix bab.
(c) (Computer graphics.) Plot three complete turns of the mutually central

helices b2,1 and b-1/2,1 in the same figure.

12. If a(t) = (x(t), y(t)) is a regular curve in R2, show that its plane curva-
ture (Ex. 8 of Sec. 3) is given by

where J is the rotation operator J(a, b) = (-b, a).

13. (Continuation.) For a plane curve a with k̃ π 0, the central curve 
a* = a + (1/k̃ )N is called the evolute of a. Thus a* gives a direct pointwise
description of the turning of a.

(a) Show that

(b) Find a formula for the line segment lt from a(t) to a*(t). This segment
is the radius (line) of the approximating circle to a near a(t) (Ex. 6 of
Sec. 3)
(c) Prove that lt is normal to a at a(t) and tangent to a* at a*(t). (Hint:
It can be assumed that a has unit speed.)

14. (Continuation, Computer graphics.) In each case, plot the given plane
curve and its evolute on the same figure, showing some of the construction
lines lt.

(a) The ellipse a(t) = (2cos t, sin t).
(b) The cycloid a(t) = (t + sin t, 1 + cos t) for -2p £ t £ 2p. (Here the evolute
bears an unexpected relation to the original curve.)

15. (Computer continuation of Ex. 9 of Sec. 3.)
(a) Write the commands that, given a regular curve a with k(0) > 0, plot—
on a small interval -e � t � e —the orthogonal projection of a into the
osculating, rectifying, and normal planes at a(0). Show the projections as
curves in R2.
(b) Test (a) on the curves (3), (4), (5) in Example 4.2 of Chapter 1 and
those in Example 4.3 of Chapter 3. Compare results.

a a
a a

a a
a* = +

¢ ¢
¢¢ ¢( ) ¢( )•

•
.

J
J

˜
•

k
a a

=
¢¢ ¢( )

=
¢ ¢¢ - ¢¢ ¢
¢ + ¢( )

J
v

x y x y

x y3 2 2 3 2 ,
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The following exercise shows that the condition k > 0 cannot be
avoided in a detailed study of the geometry of curves in R3 for even if
k is zero at only a single point, the geometric character of the curve
can change radically at that point. (This difficulty does not arise for
curves in the plane.)

16. It is shown in advanced calculus that the function

is infinitely differentiable (has continuous derivatives of all orders). Thus

is a well-defined differentiable curve.
(a) Sketch a on an interval -a � t � a.
(b) Show that the curvature of a is zero only at t = 0.
(c) What are the osculating planes of a for t < 0 and t > 0?

In the following exercise, a global geometric invariant of curves is gotten by
integrating a local invariant.

17. The total curvature of a unit-speed curve a: I Æ R3 is . If a is

merely regular, the formula becomes . Find the total curvature of

the following curves:
(a) The curve in Example 4.4.
(b) The helix in Example 3.3.
(c) The curve in Exercise 2.
(d) The ellipse a(t) = (acos t, bsin t) on 0 � t � 2p.

18. One definition of convexity for a smoothly closed plane curve is that
its curvature k is positive (hence its plane curvature k̃ is either always posi-
tive or always negative). Prove that a convex closed plane curve has total cur-
vature 2p. (Hint: Consider its spherical image.)

A theorem of Fenchel asserts that every regular closed curve a in R3 has
total curvature �2p. Surprisingly, this has an easy proof in terms of surface
theory (see Sec. 8 of Ch. 6).

19. (Computer.)
(a) Plot the curve

Even looking at this curve from different viewpoints may not make its cross-
ing pattern clear, but Exercise 21 of Section 5.4 will show that t is a trefoil knot.
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(Intuitively, a simple closed curve in R3 is a knot provided it cannot be contin-
uously deformed—always remaining simply closed—until it becomes a circle.)

The Fary-Milnor theorem asserts that every knot has total curvature
strictly greater than 4p. Show:

(b) The plane curve obtained from t by removing the z-component sin3t
has total curvature exactly 4p. (This curve is not simply closed, and hence
is not a knot.)
(c) t can be deformed to a knot that has (numerically estimated) total 
curvature less than 4.01p.

20. (Computer.)
(a) Write a command that, given an arbitrary regular curve, returns the
test function in Exercise 10 of Section 3 whose constancy implies that the
curve lies on a sphere. (Plotting this function provides a good test for con-
stancy and does not require simplifying it.) (Hint: To allow for arbitrary
parametrization, replace derivatives f ¢(s) by f ¢(t)v(t), where v(t) = ds/dt.)
(b) In each case, decide whether the curve lies on a sphere, and if so, find
its radius and center:

(i) a(t) = (2sin t, sin2t, 2sin2 t);
(ii) b(t) = (cos2 t, sin2t, 2sin t);

(iii) g (t) = (cos t, 1 + sin t, 2sin ).

21. Prove that the cubic curve g (t) = (at, bt2, ct3), abc π 0, is a cylindrical
helix if and only if 3ac = ±2b2. (Computer optional.)

2.5 Covariant Derivatives

In Chapter 1 the definition of a new object (curve, differential form, map-
ping, . . .) was usually followed by an appropriate notion of derivative of that
object. To see how to define the derivative of a vector field on a Euclidean
space, we mimic the definition of the derivative v[ f ] of a function f relative to
a tangent vector v at a point p (Definition 3.1 of Chapter 1). In fact, replacing
f by a vector field W on R3 gives a vector field t Æ W(p + tv) on the curve 
t Æ p + tv. The derivative of such a vector field was defined in Section 2. Then
the derivative of W with respect to v will be the derivative of t Æ W(p + tv) at
t = 0.

5.1 Definition Let W be a vector field on R3, and let v be a tangent vector
field to R3 at the point p. Then the covariant derivative of W with respect to
v is the tangent vector

at the point p.
— = +( )¢( )vW W tp v 0

t
2
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Evidently —vW measures the initial rate of change of W(p) as p moves in the
v direction. (The term “covariant” derives from the generalization of this
notion discussed in Chapter 7.)

For example, suppose W = x2U1 + yzU3, and

Then

so

where strictly speaking U1 and U3 are also evaluated at p + tv. Thus,

5.2 Lemma If W = wiUi is a vector field on R3, and v is a tangent
vector at p, then

Proof. We have

for the restriction of W to the curve t Æ p + tv. To differentiate such a
vector field (at t = 0), one simply differentiates its Euclidean coordinates
(at t = 0). But by the definition of directional derivative (Definition 3.1 of
Chapter 1), the derivative of wi(p + tv) at t = 0 is precisely v[wi]. Thus

◆

In short, to apply —v to a vector field, apply v to its Euclidean coordinates.
Thus the following linearity and Leibnizian properties of covariant deriva-
tive follow easily from the corresponding properties (Theorem 3.3 of Chapter
1) of directional derivatives.

5.3 Theorem Let v and w be tangent vectors to R3 at p, and let Y and Z
be vector fields on R3. Then for numbers a, b and functions f,

(1) —av+bwY = a—vY + b—wY.
(2) —v(aY + bZ) = a—vY + b—vZ.
(3) —v(fY) = v[f]Y(p) + f(p)—vY.
(4) v[Y • Z] = —vY • Z(p) + Y(p) • —vZ.

— = +( )¢( ) = [ ] ( )Âv i iW W t w Up v v p0 .

W t w t U ti ip v p v p v+( ) = +( ) +( )Â

— = [ ] ( )Âv i iW w Uv p .

Â

— = +( )¢( ) = - ( ) + ( )vW W t U Up v p p0 4 21 3 .

W t t U tUp v+( ) = -( ) +2 22
1 3,

p v+ = -( )t t t2 1 2, ,,

v p= -( ) = ( )1 0 2 2 1 0, , at , , .
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Proof. For example, let us prove (4). If

then

Hence by Theorem 3.3 of Chapter 1,

But by the preceding lemma,

Thus the two sums displayed above are precisely —vY • Z(p) and Y(p) • —vZ.
◆

Using the pointwise principle (Chapter 1, Section 2), we can take the
covariant derivative of a vector field W with respect to a vector field V, rather
than a single tangent vector v. The result is the vector field —VW whose value
at each point p is —V(p)W. Thus —VW consists of all the covariant derivatives
of W with respect to the vectors of V. It follows immediately from the lemma
above that if W = wiUi, then

Coordinate computations are easy using the basic identity Ui[ f ] = ∂f/∂xi.
For example, suppose V = (y - x)U1 + xyU3 and (as in the example above)
W = x2U1 + yzU3. Then

Hence

For the covariant derivative —VW as expressed entirely in terms of
vector fields, the properties in the preceding theorem take the following 
form.

5.4 Corollary Let V, W, Y, and Z be vector fields on R3. Then
(1) —fV+gWY = f —VY + g—WY, for all functions f and g.
(2) —V(aY + bZ) = a—VY + b—VZ, for all numbers a and b.

— = -( ) +VW x y x U xy U2 1
2

3.

V x y x U x x y x

V yz xyU yz xy

2
1

2

3
2

2[ ] = -( ) [ ] = -( )
[ ] = [ ] =
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.
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(3) —V(fY) = V[ f ]Y + f —VY, for all functions f.
(4) V [Y • Z] = —VY • Z + Y • —VZ.

We shall omit the proof, which is an exercise in the use of parentheses based
on the (pointwise principle) definition (—VY )(p) = —V(p)Y.

Note that —VY does not behave symmetrically with respect to V and Y. This
is to be expected, since it is Y that is being differentiated, while the role of V
is merely algebraic. In particular, —fVY is f —VY, but —V( fY) is not f —VY: There
is an extra term arising from the differentiation of f by V.

Exercises

1. Consider the tangent vector v = (1, -1, 2) at the point p = (1, 3, -1).
Compute —vW directly from the definition, where

(a) W = x2U1 + yU2. (b) W = xU1 + x2U2 - z2U3.

2. Let V = -yU1 + xU3 and W = cosxU1 + sinxU2. Express the follow-
ing covariant derivatives in terms of U1, U2, U3:

(a) —VW. (b) —VV.
(c) —V (z2W ). (d) —W (V ).
(e) —V (—vW ). (f) —V (xV - zW ).

3. If W is a vector field with constant length �W �, prove that for any vector
field V, the covariant derivative —VW is everywhere orthogonal to W.

4. Let X be the special vector field xiUi, where x1, x2, x3 are the natural
coordinate functions of R3. Prove that —VX = V for every vector field V.

5. Let W be a vector field defined on a region containing a regular curve a.
Then t Æ W(a(t)) is a vector field on a called the restriction of W to a and
denoted by Wa.

(a) Prove that —a¢(t)W = (Wa)¢ (t).
(b) Deduce that the straight line in Definition 5.1 may be replaced by any
curve with initial velocity v. Thus the derivative Y¢ of a vector field Y on
a curve a is (almost) —a ¢Y.

2.6 Frame Fields

When the Frenet formulas were discovered (by Frenet in 1847, and indepen-
dently by Serret in 1851), the theory of surfaces in R3 was already a richly
developed branch of geometry. The success of the Frenet approach to curves

Â
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led Darboux (around 1880) to adapt this “method of moving frames” to the
study of surfaces. Then, as we mentioned earlier, it was Cartan who brought
the method to full generality. His essential idea was very simple: To each point
of the object under study (a curve, a surface, Euclidean space itself, . . .)
assign a frame; then using orthonormal expansion express the rate of change
of the frame in terms of the frame itself. This, of course, is just what the
Frenet formulas do in the case of a curve.

In the next three sections we shall carry out this scheme for the Euclidean
space R3. We shall see that geometry of curves and surfaces in R3 is not merely
an analogue, but actually a corollary, of these basic results. Since the main
application (to surface theory) comes only in Chapter 6, these sections may
be postponed, and read later as a preliminary to that chapter.

By means of the pointwise principle (Chapter 1, Section 2) we can 
automatically extend operations on individual tangent vectors to operations
on vector fields. For example, if V and W are vector fields on R3, then the
dot product V • W of V and W is the (differentiable) real-valued function 
on R whose value at each point p is V(p) • W(p). The norm �V� of V is the
real-valued function on R3 whose value at p is �V(p)�. Thus �V � = (V • V )1/2.
By contrast with V • W, the norm function �V � need not be differentiable at
points for which V(p) = 0, since the square-root function is badly behaved 
at 0.

In Chapter 1 we called the three vector fields U1, U2, U3 the natural frame
field on R3. Here is a simple but crucial generalization.

6.1 Definition Vector fields E1, E2, E3 on R3 constitute a frame field on
R3 provided

where dij is the Kronecker delta.

Thus at each point p the vectors E1(p), E2(p), E3(p) do in fact form a frame
(Definition 1.4) since they have unit length and are mutually orthogonal.

In elementary calculus, frame fields are usually derived from coordinate
systems, as in the following cases.

6.2 Example (1) The cylindrical frame field (Fig. 2.19). Let r, J, z be the
usual cylindrical coordinate functions on R3. We shall pick a unit vector field
in the direction in which each coordinate increases (when the other two are
held constant). For r, this is evidently

E U U1 1 2= +cos sinJ J ,

E E i ji j ij• = £ £( )d 1 3, ,
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pointing straight out from the z axis. Then

points in the direction of increasing J as in Fig. 2.19. Finally, the direction
of increase of z is, of course, straight up, so

It is easy to check that Ei • Ej = dij, so this is a frame field (defined on all
of R3 except the z axis). We call it the cylindrical frame field on R3.

(2) The spherical frame field on R3 (Fig. 2.20). In a similar way, a frame
field F1, F2, F3 can be derived from the spherical coordinate functions r, J, j
on R3. As indicated in the figure, we shall measure j up from the xy plane
rather than (as is usually done) down from the z axis.

Let E1, E2, E3 be the cylindrical frame field. For spherical coordinates, the
unit vector field F2 in the direction of increasing J is the same as above, so
F2 = E2. The unit vector field F1, in the direction of increasing r, points
straight out from the origin; hence it can be expressed as

(Fig. 2.21). Similarly, the vector field for increasing j is

F E E1 1 3= +cos sinj j

E U3 3= .

E U U2 1 2= - +sin cosJ J
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Thus the formulas for E1, E2, E3 in (1) yield

By repeated use of the identity sin2 + cos2 = 1, we check that F1, F2, F3 is
a frame field—the spherical frame field on R3. (Its actual domain of defini-
tion is R3 minus the z axis, as in the cylindrical case.)

The following useful result is an immediate consequence of orthonormal
expansion.

6.3 Lemma Let E1, E2, E3 be a frame field on R3.
(1) If V is a vector field on R3, then V = fiEi, where the functions 

fi = V • Ei are called the coordinate functions of V with respect to E1,
E2, E3.

(2) If V = fiEi and W = giEi, then V • W = figi. In particular,
� V � = ( fi

2)1/2.

Thus a given vector field V has a different set of coordinate functions with
respect to each choice of a frame field E1, E2, E3. The Euclidean coordinate
functions (Lemma 2.5 of Chapter 1), of course, come from the natural frame
field U1, U2, U3. In Chapter 1, we used this natural frame field exclusively, but
now we shall gradually shift to arbitrary frame fields. The reason is clear: In 
studying curves and surfaces in R3, we shall then be able to choose a frame
field specifically adapted to the problem at hand. Not only does this simplify
computations, but it gives a clearer understanding of geometry than if we
had insisted on using the same frame field in every situation.

Exercises

1. If V and W are vector fields on R3 that are linearly independent at each
point, show that

is a frame field, where W̃ = W - (W • E1)E1.

E
V
V

E
W

W
E E E1 2 3 1 2= = = ¥, ,

˜

˜

Â
ÂÂÂ

Â

F U U U

F U U

F U U U

1 1 2 3

2 1 2

3 1 2 3

= +( ) +

= - +

= - +( ) +

cos cos sin sin

sin cos

sin cos sin cos .

j J J j

J J

j J J j

,

,

F E E3 1 3= - +sin cos .j j
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2. Express each of the following vector fields (i) in terms of the cylindrical
frame field (with coefficients in terms of r, J, z) and (ii) in terms of the spher-
ical frame field (with coefficients in terms of r, J, j):

(a) U1. (b) cosJU1 + sinJU2 + U3.
(c) xU1 + yU2 + zU3.

3. Find a frame field E1, E2, E3 such that

2.7 Connection Forms

Once more we state the essential point: The power of the Frenet formulas
stems not from the fact that they tell what the derivatives T ¢, N¢, B¢ are, but
from the fact that they express these derivatives in terms of T, N, B—and
thereby define curvature and torsion. We shall now do the same thing with
an arbitrary frame field E1, E2, E3 on R3; namely, express the covariant deriv-
atives of these vector fields in terms of the vector fields themselves. We begin
with the covariant derivative with respect to an arbitrary tangent vector v at
a point p. Then

where by orthonormal expansion the coefficients of these equations are

These coefficients cij, depend on the particular tangent vector v, so a better
notation for them is

Thus for each choice of i and j, wij is a real-valued function defined on all
tangent vectors. But we have met that kind of function before.

7.1 Lemma Let E1, E2, E3 be a frame field on R3. For each tangent vector
v to R3 at the point p, let

w ij v i jE E i jv p( ) = — ( ) ( )• ., ,1 3� �

w ij v i jE E i jv p( ) = — ( ) ( )• ., ,1 3� �

c E E i jij v i j= — ( )• .p for ,1 3� �

— = ( ) + ( ) + ( )
— = ( ) + ( ) + ( )
— = ( ) + ( ) + ( )

v

v

v

E c E c E c E

E c E c E c E

E c E c E c E

1 11 1 12 2 13 3

2 21 1 22 2 23 3

3 31 1 32 2 33 3

p p p

p p p

p p p

,

,

,

E x U x z U x z U1 1 2 3= + +cos sin cos sin sin .
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Then each wij is a 1-form, and wij = -wji. These 1-forms are called the con-
nection forms of the frame field E1, E2, E3.

Proof. By definition, wij is a real-valued function on tangent vectors, so
to verify that wij is a 1-form (Def. 5.1 of Ch. 1), it suffices to check the lin-
earity condition. Using Theorem 5.3, we get

To prove that wij = -wji we must show that wij(v) = -wji(v) for every
tangent vector v. By definition of frame field, Ei • Ej = dij, and since each
Kronecker delta has constant value 0 or 1, the Leibnizian formula (4) of
Theorem 5.3 yields

By the symmetry of the dot product, the two vectors in this last term may
be reversed, so we have found that 0 = wij(v) + wji(v). ◆

The geometric significance of the connection forms is no mystery. The def-
inition wij(v) = —vEi • Ej(p) shows that wij(v) is the initial rate at which Ei

rotates toward Ej as p moves in the v direction. Thus the 1-forms wij contain
this information for all tangent vectors to R3.

The following basic result is little more than a rephrasing of the definition
of connection forms.

7.2 Theorem Let wij (1 � i, j � 3) be the connection forms of a frame
field E1, E2, E3 on R3. Then for any vector field V on R3,

We call these the connection equations of the frame field E1, E2, E3.

Proof. For fixed i, both sides of this equation are vector fields. Thus we
must show that at each point p,

— = ( )( ) ( )( ) ÂV p i ij j
j

E V Ew p p .

— = ( ) ( )ÂV i ij j
j

E V E iw , 1 3� � .

0 = [ ] = — ( ) + ( ) —v p pE E E E E Ei j v i j i v j• • • .

w

w w

ij av bw i j

v i w i j

v i j w i j

ij ij

a b E E

a E b E E

a E E b E E

a b

v w p

p

p p

v w

+( ) = — ( )
= — + —( ) ( )
= — ( ) + — ( )
= ( ) + ( )

+ •

•

• •

.
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But as we have already seen, the very definition of connection form makes
this equation a consequence of orthonormal expansion. ◆

When i = j, the skew-symmetry condition wij = -wji becomes wii = -wii;
thus

Hence this condition has the effect of reducing the nine 1-forms wij for 
1 � i, j � 3 to essentially only three, say w12, w13, w23. It is perhaps best to
regard the connection forms wij as the entries of a skew-symmetric matrix of
1-forms,

Thus in expanded form, the connection equations (Theorem 7.2) become

(*)

showing an obvious relation to the Frenet formulas

The absence from the Frenet formulas of terms corresponding to w13(V)E3

and -w13(V)E1 is a consequence of the special way the Frenet frame field is
fitted to its curve. Having gotten T(~E1), we chose N(~E2) so that the deriv-
ative T ¢ would be a scalar multiple of N alone and not involve B(~E3).

Another difference between the Frenet formulas and the equations above
stems from the fact that R3 has three dimensions, while a curve has but one.
The coefficients—curvature k and torsion t—in the Frenet formulas measure
the rate of change of the frame field T, N, B only along its curve, that is, in
the direction of T alone. But the coefficients in the connection equations must
be able to make this measurement for E1, E2, E3 with respect to arbitrary
vector fields in R3. This is why the connection forms are 1-forms and not just
functions.

These formal differences aside, a more fundamental distinction stands out.
It is because a Frenet frame field is specially fitted to its curve that the Frenet

¢ =
¢ = - +
¢ = -
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formulas give information about that curve. Since the frame field E1, E2, E3

used above is completely arbitrary, the connection equations give no direct
information about R3, but only information about the “rate of rotation” of
that particular frame field. This is not a weakness, but a strength, since as
indicated earlier, if we can fit a frame field to a geometric problem arising in
R3, then the connection equations will give direct information about that
problem. Thus, these equations play a fundamental role in all the differential
geometry of R3. For example, the Frenet formulas can be deduced from them
(Exercise 8).

Given an arbitrary frame field E1, E2, E3 on R3, it is fairly easy to find an
explicit formula for its connection forms. First use orthonormal expansion
to express the vector fields E1, E2, E3 in terms of the natural frame field U1,
U2, U3 on R3:

Here each aij = Ei • Uj is a real-valued function on R3. The matrix

with these functions as entries is called the attitude matrix of the frame field
E1, E2, E3. In fact, at each point p, the numerical matrix

is exactly the attitude matrix of the frame E1(p), E2(p), E3(p) as in Definition
1.6. Since attitude matrices are orthogonal, the transpose tA of A is equal to
its inverse A-1.

Define the differential of A = (aij) to be dA = (daij), so dA is a matrix
whose entries are 1-forms. We can now give a simple expression for the con-
nection forms in terms of the attitude matrix.

7.3 Theorem If A = (aij) is the attitude matrix and w = (wij) the matrix
of connection forms of a frame field E1, E2, E3, then

or equivalently,

w = ( )dA At matrix multiplication ,

A aijp p( ) = ( )( )

A a

a a a

a a a

a a a
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Since the proof is routine, it may be more informative to illustrate the result
by an example. For the cylindrical frame field in Example 6.2, we found the
attitude matrix

Thus

Since w12 = dJ is the only nonzero connection form (except, of course,
w21 = -w12), the connection equations (*) reduce to

These equations have immediate geometrical significance. Because V is
arbitrary, the third equation says that the vector field E3 is parallel. We knew
this already since in the cylindrical frame field, E3 is just U3.

The first two equations tell us that the covariant derivatives of E1 and E2

with respect to a vector field V depend only on the rate of change of the angle
J in the V direction.

For example, the definition of J shows that V [J] = 0 whenever V is a
vector field that at each point is tangent to a plane through the z axis. Thus
for a vector field of this type the connection equations above predict that 
—VE1 = —VE2 = 0. In fact, it is clear from Fig. 2.19 that E1 and E2 do remain
parallel on any plane through the z axis.
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Exercises

1. For any function f, show that the vector fields

form a frame field, and find its connection forms.

2. Find the connection forms of the natural frame field U1, U2, U3.

3. For any function f, show that

is the attitude matrix of a frame field, and compute its connection forms.

4. Prove that the connection forms of the spherical frame field are

5. If E1, E2, E3 is a frame field and W = fiEi, prove the covariant deriva-
tive formula:

6. Let E1, E2, E3 be the cylindrical frame field. If V is a vector field such
that V[r] = r and V[J] = 1, compute —V (r cosJE1 + r sinJE3).

7. (Computer.) (a) Write a computer command that, given the attitude
matrix A of a frame field on R3, returns the matrix w = dA tA of its 
connection forms. (Hint: For Maple, use the differential operator d from 
the package difforms. For Mathematica, use the total differential Dt.) (b) 
Test part (a) on the cylindrical frame field and on the spherical frame field
(Ex. 4).

8. Let b be a unit-speed curve in R3 with k > 0, and suppose that E1, E2, E3

is a frame field on R3 such that the restriction of these vector fields to b gives
the Frenet-frame field T, N, B of b. Prove that

w k w w t12 13 230T T T( ) = ( ) = ( ) =, , .
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Then deduce the Frenet formulas from the connection equations. (Hint:
Ex. 5 of Sec. 5.)

2.8 The Structural Equations

We have seen that 1-forms—the connection forms—give the simplest descrip-
tion of the rate of rotation of a frame field. Furthermore, the frame field
itself can be described in terms of 1-forms.

8.1 Definition If E1, E2, E3 is a frame field on R3, then the dual 1-forms
q1, q2, q3 of the frame field are the 1-forms such that

for each tangent vector v to R3 at p.

Note that qi is linear on the tangent vectors at each point; hence it is a 1-
form. In particular, qi(Ej) = dij, so readers familiar with the notion of dual
vector spaces will recognize that at each point, q1, q2, q3 gives the dual basis
of E1, E2, E3.

In the case of the natural frame field U1, U2, U3, the dual forms are just
dx1, dx2, dx3. In fact, from Example 5.3 of Chapter 1 we get

for each tangent vector v; hence dxi = qi.
Using dual forms, the orthonormal expansion formula in Lemma 6.3 may

be written V = qi(V )Ei. In the characteristic fashion of duality, this
formula becomes the following lemma.

8.2 Lemma Let q1, q2, q3 be the dual 1-forms of a frame field E1, E2, E3.
Then any 1-form f on R3 has a unique expression

Proof. Two 1-forms are the same if they have the same value on any
vector field V. But

◆

f q f q

f q f

E V E V

V E V

i i i i

i i

( )( )( ) = ( ) ( )

= ( )( ) = ( )
Â Â

Â .

f f q= ( )Â Ei i .

Â

dx v Ui i iv v p( ) = = ( )•

q i iEv v p( ) = ( )•
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Thus f is expressed in terms of dual forms of E1, E2, E3 by evaluating it
on E1, E2, E3. This useful fact is the generalization to arbitrary frame fields
of Lemma 5.4 of Chapter 1.

We compared a frame field E1, E2, E3 to the natural frame field by means
of its attitude matrix A = (aij), for which

The dual formulation is just

with the same coefficients. In fact, by the preceding lemma,

But

These formulas for Ei and qi show plainly that q1, q2, q3 is merely the dual
description of the frame field E1, E2, E3.

In calculus, when a new function appears on the scene, it is natural to ask
what its derivative is. Similarly with 1-forms—having associated with each
frame field its dual forms and connection forms, it is reasonable to ask what
their exterior derivatives are. The answer is given by two neat sets of equa-
tions discovered by Cartan.

8.3 Theorem (Cartan structural equations.) Let E1, E2, E3 be a frame
field on R3 with dual forms q1, q2, q3 and connection forms wij (1 � i, j � 3).
The exterior derivatives of these forms satisfy

(1) the first structural equations:

(2) the second structural equations:

Because qi is the dual of Ei, the first structural equations may be easily rec-
ognized as the dual of the connection equations. Only later experience will
show that the second structural equations mean that R3 is flat—roughly
speaking, in the same sense that the plane R2 is flat.

d i jij ik kj
k

w w w= Ÿ ( )Â 1 3� �, .

d ii ij j
j

q w q= Ÿ ( )Â 1 3� � ;

q di j i j ik k j ik kj ijU E U a U U a a( ) = = ( ) = =Â Â• • .

q qi i j jU dx= ( )Â .

q i ij ja dx= Â

E a U ii ij j= £ £( )Â 1 3 .
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The most efficient proof of the structural equations requires some prelim-
inary remarks. In the Cartan approach, the fundamental objects are not indi-
vidual forms, but rather matrices whose entries are forms. We have already
seen that the simplest description of the connection forms wij of a frame field
is as a single skew-symmetric matrix w with entries wij. Then, for example, w
is expressed in terms of the attitude matrix A of the frame field by the matrix
equation w = dA tA. (Here, as always, to apply d to a matrix, apply it to each
entry of the matrix.)

Similarly, the dual forms of a frame field can be described by a single n ¥ 1
matrix q with entries qi. If x is the n ¥ 1 matrix whose entries are the natural
coordinates xi of R3, then

so the formula qi = aij dxj above can be written as

For such matrices of forms, matrix multiplication is defined as usual, but
of course when entries are multiplied it is by the wedge product.

The proof of Theorem 8.3 is now quite simple. Recall that since the atti-
tude matrix A is orthogonal, tAA is the identity matrix I, which can be inserted
in any matrix formula without effect.

Proof of the First Structural Equation. Since d 2 = 0, we evidently
have d(dx) = 0, so

Expressed in terms of entries, this is indeed the version in (1) of Theorem
8.3.

Proof of the Second Structural Equation. For functions f and g.

Thus, using the transpose rule t(AB) = tB tA, we get

where the last step uses the skew-symmetry of w. Again, in terms of entries,
this is the version in (2) of Theorem 8.3. ◆

d d dA A dA d A dA A A dAt t t t tw w w ww= ( ) = - ◊ ( ) = - ◊ ( ) = - = ,
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8.4 Example Structural equations for the spherical frame field (Example
6.2). The dual forms and connection forms are

Let us check, say, the first structural equation

Using the skew-symmetry wij = -wji and the general properties of forms
developed in Chapter 1, we get

(the latter since dJ Ÿ dJ = 0). The sum of these terms is, correctly,

Second structural equations involve only one wedge product. For example,
since w11 = w22 = 0,

In this case,

which is the same as

To derive the expressions given above for the dual 1-forms, first compute
dx1, dx2, dx3 by differentiating the well-known equations

Then substitute in the formula qi = aij dxj, where A = (aij) is the atti-
tude matrix from Example 6.2. This result, somewhat disguised, is derived in 
elementary calculus by a familiar plausibility argument: If at each point the
spherical coordinates r, J, j are altered by increments dr, dJ, dj, then the
sides of the resulting infinitesimal box (Fig. 2.22) are dr, r cosj dJ, r dj.
These are exactly the formulas for q1, q2, q3.
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The structural equations provide a powerful method for dealing with geo-
metrical problems in R3: Select a frame field well adapted to the problem at
hand; find its dual 1-forms and connection forms; apply the structural equa-
tions; interpret the results. We will use this method later to study the geom-
etry of surfaces in R3.

Exercises

1. For a 1-form f = fiqi, prove

(Compare Ex. 5 of Sec. 7.)

2. Check all the structural equations of the spherical frame field.

3. For the cylindrical frame field E1, E2, E3.
(a) Starting from the basic cylindrical equations x = r cosJ, y = r sinJ,
z = z, show that the dual 1-forms are

(b) Deduce that E1[r] = 1, E2[J] = 1/r, E3[z] = 1 and that the other six 
possibilities E1[J], . . . are all zero.
(c) For a function f(r, J, z), show that

q q J q1 2 3= = =dr r d dz, , .

d df fj i ij
i

j
j

f w q= +ÏÌ
Ó

¸̋
˛

ŸÂÂ .

Â
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4. Frame fields on R2. Given a frame field E1, E2 on R2 there is an angle
function y such that

(a) Express the connection form and dual 1-forms in terms of y and the
natural coordinates x, y.
(b) What are the structural equations in this case? Check that the results
in part (a) satisfy these equations.

(Hint: Defining E3 = U3 gives a frame field on R3.)

2.9 Summary

We have accomplished the aims set at the beginning of this chapter. The idea
of a moving frame has been expressed rigorously as a frame field—either on
a curve in R3 or on an open set of R3 itself. In the case of a curve, we used
only the Frenet frame field T, N, B of the curve. Expressing the derivatives
of these vector fields in terms of the vector fields themselves, we discovered
the curvature and torsion of the curve. It is already clear that curvature and
torsion tell a lot about the geometry of a curve; we shall find in Chapter 3
that they tell everything. In the case of an open set of R3, we dealt with an
arbitrary frame field E1, E2, E3. Cartan’s generalization (Theorem 7.2) of the
Frenet formulas followed the same pattern of expressing the (covariant)
derivatives of these vector fields in terms of the vector fields themselves.
Omitting the vector field V from the notation in Theorem 7.2, we have

Cartan’s equations are not conspicuously more complicated than Frenet’s,
because the notion of 1-form is available for the coefficients wij, the connec-
tion forms.

Cartan Frenet
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We recall some familiar features of plane geometry. First of all, two trian-
gles are congruent if there is a rigid motion of the plane that carries one tri-
angle exactly onto the other. Corresponding angles of congruent triangles are
equal, corresponding sides have the same length, the areas enclosed are equal,
and so on. Indeed, any geometric property of a given triangle is automati-
cally shared by every congruent triangle. Conversely, there are a number of
simple ways in which one can decide whether two given triangles are con-
gruent—for example, if for each the same three numbers occur as lengths of
sides.

In this chapter we shall investigate the rigid motions (isometries) of Euclid-
ean space, and see how these remarks about triangles can be extended to other
geometric objects.

3.1 Isometries of R3

An isometry, or rigid motion, of Euclidean space is a mapping that preserves
the Euclidean distance d between points (Definition 1.2, Chapter 2).

1.1 Definition An isometry of R3 is a mapping F: R3 Æ R3 such that

for all points p, q in R3.

1.2 Example (1) Translations. Fix a point a in R3 and let T be the 
mapping that adds a to every point of R3. Thus T(p) = p + a for all 

d F F dp q p q( ) ( )( ) = ( ), ,
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points p. T is called translation by a. It is easy to see that T is an isometry,
since

(2) Rotation around a coordinate axis. A rotation of the xy plane through
an angle J carries the point (p1, p2) to the point (q1, q2) with coordinates 
(Fig. 3.1)

Thus a rotation C of three-dimensional Euclidean space R3 around the z axis,
through an angle J, has the formula

Evidently, the mapping C is a linear transformation. A straightforward com-
putation shows that C preserves Euclidean distance, so it is an isometry.

Recall that if F and G are mappings of R3, the composite function GF is
a mapping of R3 obtained by applying first F, then G.

1.3 Lemma If F and G are isometries of R3, then the composite mapping
GF is also an isometry of R3.

Proof. Since G is an isometry, the distance from G(F(p)) to G(F(q)) is
d(F(p), F(q)). But since F is an isometry, this distance equals d(p, q). Thus
GF preserves distance; hence it is an isometry. ◆

C C p p p p p p p pp( ) = ( ) = - +( )1 2 3 1 2 1 2 3, , , ,cos sin sin cos .J J J J

q p p2 1 2= +sin cos .J J

q p p1 1 2= -cos sinJ J,

= - = ( )p q p qd , .

= +( ) - +( )p a q a

d T T dp q p a q a( ) ( )( ) = + +( ),  ,

FIG. 3.1
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In short, a composition of isometries is again an isometry.
We also recall that if F: R3 Æ R3 is both one-to-one and onto, then F has

a unique inverse function F -1: R3 Æ R3, which sends each point F(p) back to
p. The relationship between F and F -1 is best described by the formulas

where I is the identity mapping of R3, that is, the mapping such that I(p) = p
for all p.

Translations of R3 (as defined in Example 1.2) are the simplest type of
isometry.

1.4 Lemma (1) If S and T are translations, then ST = TS is also a 
translation.

(2) If T is translation by a, then T has an inverse T -1, which is translation
by -a.

(3) Given any two points p and q of R3, there exists a unique translation
T such that T(p) = q.

Proof. To prove (3), for example, note that translation by q - p certainly
carries p to q. This is the only possibility, since if T is translation by a and
T(p) = q, then p + a = q; hence a = q - p. ◆

A useful special case of (3) is that if T is a translation such that for some
one point T(p) = p, then T = I.

The rotation in Example 1.2 is an example of an orthogonal transformation
of R3, that is, a linear transformation C: R3 Æ R3 that preserves dot products
in the sense that

1.5 Lemma If C: R3 Æ R3 is an orthogonal transformation, then C is an
isometry of R3.

Proof. First we show that C preserves norms. By definition, ||p||2 = p • p;
hence

Thus || C(p) || = || p || for all points p. Since C is linear, it follows easily that
C is an isometry:

C C Cp p p p p p( ) = ( ) ( ) = =2 2• • .

C Cp q p q p q( ) ( ) =• • .for all ,

FF I F F I- -= =1 1, ,
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◆

Our goal now is Theorem 1.7, which asserts that every isometry can be
expressed as an orthogonal transformation followed by a translation. The
main part of the proof is the following converse of Lemma 1.5.

1.6 Lemma If F is an isometry of R3 such that F(0) = 0, then F is an
orthogonal transformation.

Proof. First we show that F preserves dot products; then we show that
F is a linear transformation. Note that by definition of Euclidean distance,
the norm || p || of a point p is just the Euclidean distance d(0, p) from the
origin to p. By hypothesis, F preserves Euclidean distance, and F(0) = 0;
hence

Thus F preserves norms. Now by a standard trick (“polarization”), we shall
deduce that it also preserves dot products. Since F is an isometry,

for any pair of points. Hence

By the definition of norm, this implies

Hence

The norm terms here cancel, since F preserves norms, and we find

as required.
It remains to prove that F is linear. Let u1, u2, u3 be the unit points 

(1, 0, 0), (0, 1, 0), (0, 0, 1), respectively. Then we have the identity

p u= ( ) = Âp p p pi i1 2 3, , .

F Fp q p q( ) ( ) =• • ,

F F F Fp p q q p p q q( ) - ( ) ( ) + ( ) = - +2 2 2 22 2• • .

F F F Fp q p q p q p q( ) - ( )( ) ( ) - ( )( ) = -( ) -( )• • .

F Fp q p q( ) - ( ) = - .

d F F dp q p q( ) ( )( ) = ( ),  ,

F d F d F F dp 0 p 0 p 0 p p( ) = ( )( ) = ( ) ( )( ) = ( ) =, ,  , .

= ( )d p q p q, for all , .

d C C C C Cp q p q p q p q( ) ( )( ) = ( ) - ( ) = -( ) = -,
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Also, the points u1, u2, u3 are orthonormal; that is, ui • uj = dij.
We know that F preserves dot products, so F(u1), F(u2), F(u3) must also

be orthonormal. Thus orthonormal expansion gives

But

so

Using this identity, it is a simple matter to check the linearity condition

◆

We now give a concrete description of an arbitrary isometry.

1.7 Theorem If F is an isometry of R3, then there exist a unique trans-
lation T and a unique orthogonal transformation C such that

Proof. Let T be translation by F(0). Then Lemma 1.4 shows that T -1 is
translation by -F(0). But T -1 F is an isometry, by Lemma 1.3, and 
furthermore,

Thus by Lemma 1.6, T -1 F is an orthogonal transformation, say T -1F = C.
Applying T on the left, we get F = TC.

To prove the required uniqueness, we suppose that F can also be expressed
as , where is a translation and an orthogonal transformation. We
must prove = T and = C. Now TC = ; hence C = T -1 . Since C
and are linear transformations, they of course send the origin to itself. It
follows that (T -1 )(0) = 0. But since T -1 is a translation, we conclude that
T -1 = I; hence = T. Then the equation TC = becomes TC = T .
Applying T -1 gives C = .. ◆

Thus every isometry of R3 can be uniquely described as an orthogonal trans-
formation followed by a translation. When F = TC as in Theorem 1.7, we call

C
CCTTT

TT
C

CTCTCT
CTCT

T F T F F F- -( )( ) = ( )( ) = ( ) - ( ) =1 10 0 0 0 0.

F TC= .

F a b aF bFp q p q+( ) = ( ) + ( ).

F p Fi ip u( ) = ( )Â .

F F pi i ip u p u( ) ( ) = =• • ,

F F F Fi ip p u u( ) = ( ) ( ) ( )Â • .
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C the orthogonal part of F, and T the translation part of F. Note that CT is
generally not the same as TC (Exercise 1).

This decomposition theorem is the decisive fact about isometries of R3 (and
its proof holds for Rn as well). We will use it to find an explicit formula for
an arbitrary isometry.

First, recall from linear algebra that if C: R3 Æ R3 is any linear transfor-
mation, its matrix (relative to the natural basis of R3) is the 3¥3 matrix {cij}
such that

Thus, using the column-vector conventions, q = C(p) can be written as

By a standard result of linear algebra, a linear transformation of R3 is
orthogonal (preserves dot products) if and only if its matrix is orthogonal
(transpose equals inverse).

Returning to the decomposition F = TC in Theorem 1.7, if T is transla-
tion by a = (a1, a2, a3), then

Using the above formula for C(p), we get

Alternatively, using the column-vector conventions, q = F(p) means

Exercises

Throughout these exercises, A, B, and C denote orthogonal transformations
(or their matrices), and Ta is translation by a.

1. Prove that CTa = TC(a)C.

2. Given isometries F = TaA and G = TbB, find the translation and orthog-
onal part of FG and GF.
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F F p p p a c p a c p a c pj j j j j jp( ) = ( ) = + + +( )Â Â Â1 2 3 1 1 2 2 3 3, , , , .

F TC Cp p a p( ) = ( ) = + ( ).
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C p p p c p c p c pj j j j j j1 2 3 1 2 3, , ,( ) = ( )Â Â Â, .
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3. Show that an isometry F = TaC has an inverse mapping F -1, which is
also an isometry. Find the translation and orthogonal parts of F -1.

4. If

show that C is orthogonal; then compute C(p) and C(q), and check that 
C(p) • C(q) = p • q.

5. Let F = TaC, where a = (1, 3, -1) and

If p = (2, -2, 8), find the coordinates of the point q for which
(a) q = F(p). (b) q = F -1(p).
(c) q = (CTa) (p).

6. In each case decide whether F is an isometry of R3. If so, find its trans-
lation and orthogonal parts.

(a) F(p) = -p. (b) F(p) = (p • a) a, where || a || = 1.
(c) F(p) = (p3 - 1, p2 - 2, p1 - 3). (d) F(p) = (p1, p2, 1).

A group G is a set furnished with an operation that assigns to each pair g1, g2

of elements of G an element g1g2, subject to these rules: (1) associative law:
(g1g2)g3 = g1(g2g3), (2) there is a unique identity element e such that eg =
ge = g for all g in G, and (3) inverses: For each g in G there is an element 
g-1 in G such that gg-1 = g-1 g = e.

Groups occur naturally in many parts of geometry, and we shall mention
a few in subsequent exercises. Basic properties of groups may be found in a
variety of elementary textbooks.

7. Prove that the set E(3) of all isometries of R3 forms a group—with com-
position of functions as the operation. E(3) is called the Euclidean group of
order 3.

A subset H of a group G is a subgroup of G provided (1) if g1 and g2 are in
H, then so is g1g2, (2) is g is in H, so is g-1, and hence (3) the identity element
e of G is in H. A subgroup H of G is automatically a group.
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8. Prove that the set T (3) of all translations of R3 and the set O(3) of all
orthogonal transformations of R3 are each subgroups of the Euclidean group
E(3). O(3) is called the orthogonal group of order 3. Which isometries of R3

are in both these subgroups?

It is easy to check that the results of this section, though stated for R3, remain
valid for Euclidean spaces Rn of any dimension.

9. (a) Give an explicit description of an arbitrary 2 ¥ 2 orthogonal matrix
C. (Hint: Use an angle and a sign.)

(b) Give a formula for an arbitrary isometry F of R = R1.

3.2 The Tangent Map of an Isometry

In Chapter 1 we showed that an arbitrary mapping F: R3 Æ R3 has a tangent
map F* that carries each tangent vector v at p to a tangent vector F*(v) at
F(p). If F is an isometry, its tangent map is remarkably simple. (Since the dis-
tinction between tangent vector and point is crucial here, we temporarily
restore the point of application to the notation.)

2.1 Theorem Let F be an isometry of R3 with orthogonal part C.
Then

for all tangent vectors vp to R3.
Verbally: To get F*(vp), first shift the tangent vector vp to the canonically

corresponding point v of R3, then apply the orthogonal part C of F, and
finally shift this point C(v) to the canonically corresponding tangent vector
at F(p) (Fig. 3.2). Thus all tangent vectors at all points p of R3 are “rotated”
in exactly the same way by F*—only the new point of application F(p) depends
on p.

Proof. Write F = TC as in Theorem 1.7. Let T be translation by a, so
F(p) = a + C(p). If vp is a tangent vector to R3, then by Definition 7.4 of
Chapter 1, F*(vp) is the initial velocity of the curve t Æ F(p + tv). But using
the linearity of C, we obtain

= ( ) + ( )F tCp v .

F t TC t T C tC C tCp v p v p v a p v+( ) = +( ) = ( ) + ( )( ) = + ( ) + ( )

F Cp F p* v v( ) = ( ) ( )
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Thus F*(vp) is the initial velocity of the curve t Æ F(p) + tC(v), which is
precisely the tangent vector C(v)F(p). ◆

Expressed in terms of Euclidean coordinates, this result becomes

where C = (cij) is the orthogonal part of the isometry F, and if Ui is evalu-
ated at p, then is evaluated at F(p).

2.2 Corollary Isometries preserve dot products of tangent vectors. That
is, if vp and wp are tangent vectors to R3 at the same point, and F is an isom-
etry, then

Proof. Let C be the orthogonal part of F, and recall that C, being an
orthogonal transformation, preserves dot products in R3. By Theorem 2.1,

where we have twice used Definition 1.3 of Chapter 2 (dot products of
tangent vectors). ◆

Since dot products are preserved, it follows automatically that derived con-
cepts such as norm and orthogonality are preserved. Explicitly, if F is an isom-
etry, then || F*(v) || = || v ||, and if v and w are orthogonal, so are F*(v) and F*(w).
Thus frames are also preserved: if e1, e2, e3 is a frame at some point p of R3 and
F is an isometry, then F*(e1), F*(e2), F*(e3) is a frame at F(p). (A direct proof is
easy: ei • ej = dij, so by Corollary 2.2, F*(ei) • F*(ej) = ei • ej = dij.)

= =v w v w• •p p

F F C C C Cp p F p F p* • * • •v w v w v w( ) ( ) = ( ) ( ) = ( ) ( )( ) ( )

F Fp p p p* • * • .v w v w( ) ( ) =

Ui

F v U c v Uj j
j

ij j i
i j

* Â ÂÊ
ËÁ

ˆ
¯̃ = ,

,

FIG. 3.2
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Assertion (3) of Lemma 1.4 shows how two points uniquely determine a
translation. We now show that two frames uniquely determine an isometry.

2.3 Theorem Given any two frames on R3, say e1, e2, e3 at the point p
and f1, f2, f3 at the point q, there exists a unique isometry F of R3 such that
F*(ei) = fi for 1 � i � 3.

Proof. First we show that there is such an isometry. Let ê1, ê2, ê3, and f̂1,
f̂2, f̂3 be the points of R3 canonically corresponding to the vectors in 
the two frames. Let C be the unique linear transformation of R3 such that
C(êi) = f̂ i for 1 � i � 3. It is easy to check that C is orthogonal. Then let
T be a translation by the point q - C(p). Now we assert that the isometry
F = TC carries the e frame to the f frame. First note that

Then using Theorem 2.1 we get

for 1 � i � 3.
To prove uniqueness, we observe that by Theorem 2.1 this choice of C

is the only possibility for the orthogonal part of the required isometry. The
translation part is then completely determined also, since it must carry C(p)
to q. Thus the isometry F = TC is uniquely determined. ◆

To compute the isometry in the theorem, recall that the attitude matrix A
of the e frame has the Euclidean coordinates of ei as its ith row: ai1, ai2, ai3.
The attitude matrix B of the f frame is similar. We claim that C in the theorem
(or strictly speaking, its matrix) is tBA. To verify this it suffices to check that
tBA(ei) = fi, since this uniquely characterizes C. For i = 1 we find, using the
column-vector conventions,

that is, tBA(e1) = f1. The cases i = 2, 3 are similar; hence C = tBA. As noted
above, T is then necessarily translated by q - C(p).
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Exercises

1. If T is a translation, show that for every tangent vector v the vector T(v)
is parallel to v (same Euclidean coordinates).

2. Prove the general formulas (GF )* = G*F* and (F -1)* = (F*)-1 in the
special case where F and G are isometries of R3.

3. Given the frame

at p = (0, 1, 0) and the frame

at q = (3, -1, 1), find a and C such that the isometry F = TaC carries the e
frame to the f frame.

4. (a) Prove that an isometry F = TC carries the plane through p orthog-
onal to q π 0 to the plane through F(p) orthogonal to C(q).

(b) If P is the plane through (1/2, -1, 0) orthogonal to (0, 1, 0) find an
isometry F = TC such that F(P) is the plane through (1, -2, 1) orthogonal
to (1, 0, -1).

5. (Computer.)
(a) Verify that both sets of vectors in Exercise 3 form frames by showing
that A tA = I for their attitude matrices.
(b) Find the matrix C that carries each ei to fi, and check this for i = 1, 2,
3.

3.3 Orientation

We now come to one of the most interesting and elusive ideas in geometry.
Intuitively, it is orientation that distinguishes between a right-handed glove
and a left-handed glove in ordinary space. To handle this concept mathe-
matically, we replace gloves by frames and separate all the frames on R3 into
two classes as follows. Recall that associated with each frame e1, e2, e3 at a
point of R3 is its attitude matrix A. According to the exercises for Section 1
of Chapter 2,

e e e1 2 3 1• det .¥ = = ±A

f f f1 2 31 0 1 0 1 0 1 0 1 2= ( ) = ( ) = -( ), , 2 , , , , , ,

e e e1 2 32 2 1 3 2 1 2 3 1 2 2 3= ( ) = -( ) = -( ), , , , , , , ,
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When this number is +1, we shall say that the frame e1, e2, e3 is positively ori-
ented (or right-handed); when it is -1, the frame is negatively oriented (or left-
handed).

We omit the easy proof of the following facts.

3.1 Remark (1) At each point of R3 the frame assigned by the natural
frame field U1, U2, U3 is positively oriented.

(2) A frame e1, e2, e3 is positively oriented if and only if e1 ¥ e2 = e3. Thus
the orientation of a frame can be determined, for practical purposes, by the
“right-hand rule” given at the end of Section 1 of Chapter 2. Pictorially, the
frame (P) in Fig. 3.3 is positively oriented, whereas the frame (N ) is nega-
tively oriented. In particular, Frenet frames are always positively oriented,
since by definition, B = T ¥ N.

(3) For a positively oriented frame e1, e2, e3, the cross products are

For a negatively oriented frame, reverse the vectors in each cross product.
(One need not memorize these formulas—the right-hand rule will give them
all correctly.)

Having attached a sign to each frame on R3, we next attach a sign to each
isometry F of R3. In Chapter 2 we proved the well-known fact that the deter-
minant of an orthogonal matrix is either +1 or -1. Thus if C is the orthog-
onal part of the isometry F, we define the sign of F to be the determinant of
C, with notation

sgn det .F C=

e e e e e3 1 2 2 1= ¥ = - ¥ .

e e e e e2 3 1 1 3= ¥ = - ¥ ,

e e e e e1 2 3 3 2= ¥ = - ¥ ,

FIG. 3.3
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We know that the tangent map of an isometry carries frames to frames.
The following result tells what happens to their orientations.

3.2 Lemma If e1, e2, e3 is a frame at some point of R3 and F is an 
isometry, then

Proof. If , then by the coordinate form of Theorem 2.1 we
have

where C = (cij) is the orthogonal part of F. Thus the attitude matrix of the
frame F*(e1), F*(e2), F*(e3) is the matrix

But the triple scalar product of a frame is the determinant of its attitude
matrix, and by definition, sgnF = detC. Consequently,

◆

This lemma shows that if sgnF = +1, then F* carries positively oriented
frames to positively oriented frames and carries negatively oriented frames
to negatively oriented frames. On the other hand, if sgnF = -1, positive goes
to negative and negative to positive.

3.3 Definition An isometry F of R3 is said to be

where C is the orthogonal part of F.

orientation F C- ifreversing sgn det ,= = -1

orientation preserving F C- if sgn det ,= = +1

= ( ) ◊ ¥sgn .F e e e1 2 3

= ◊ = ◊det det det detC A C At

F F F C At* • * * dete e e1 2 3( ) ( ) ¥ ( ) = ( )

c a c a C Aik jk
k

ik
t

kj
k

tÂ ÂÊ
Ë

ˆ
¯ = Ê

Ë
ˆ
¯ = .

F c a Uj ik jk i
i k

* e( ) = Â ,
,

e j jk ka U= Â

F F F F* • * * sgn • .e e e e e e1 2 3 1 2 3( ) ( ) ¥ ( ) = ( ) ¥
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3.4 Example (1) Translations. All translations are orientation-preserv-
ing. Geometrically this is clear, and in fact the orthogonal part of a transla-
tion T is just the identity mapping I, so sgnT = detI = +1.

(2) Rotations. Consider the orthogonal transformation C given in Example
1.2, which rotates R3 through angle q around the z axis. Its matrix is

Hence sgnC = detC = +1, so C is orientation-preserving (see Exercise 4).

(3) Reflections. One can (literally) see reversal of orientation by using a
mirror. Suppose the yz plane of R3 is the mirror. If one looks toward that
plane, the point p = (p1, p2, p3) appears to be located at the point

(Fig. 3.4). The mapping R so defined is called reflection in the yz plane.
Evidently it is an orthogonal transformation, with matrix

Thus R is an orientation-reversing isometry, as confirmed by the experimen-
tal fact that the mirror image of a right hand is a left hand.

Both dot and cross product were originally defined in terms of Euclidean
coordinates. We have seen that the dot product is given by the same formula,

v w e e• •= ( ) ( ) =Â Â Âv w v wi i i i i i ,

-Ê

Ë

Á
Á

ˆ

¯

˜
˜

1 0 0

0 1 0

0 0 1

.

R p p pp( ) = -( )1 2 3, ,

cos sin

sin cos .

q q
q q

-Ê

Ë

Á
Á

ˆ

¯

˜
˜

0

0

0 0 1

FIG. 3.4
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no matter what frame e1, e2, e3 is used to get coordinates for v and w. Almost
the same result holds for cross products, but orientation is now involved.

3.5 Lemma Let e1, e2, e3 be a frame at a point of R3. If and 
, then

where e = e1 • e2 ¥ e3 = ±1.

Proof. It suffices merely to expand the cross product

using the formulas (3) of Remark 3.1. For example, if the frame is posi-
tively oriented, for the e1 component of v ¥ w we get

Since e = 1 in this case, we get the same result by expanding the determi-
nant in the statement of this lemma. ◆

It follows immediately that the effect of an isometry on cross products also
involves orientation.

3.6 Theorem Let v and w be tangent vectors to R3 at p. If F is an 
isometry of R3, then

Proof. Write . Now let

Since F* is linear,

A straightforward computation using Lemma 3.5 shows that

F F F* * *v w v w( ) ¥ ( ) = ¥( )e ,

F v F wi i i i* * .v e w e( ) = ( ) =Â Âand

e pi iF U= ( )( )* .

v p w p= ( ) = ( )Â ÂvU and wUi i i i  

F F F F* sgn * * .v w v w¥( ) = ( ) ( ) ¥ ( )

v w v w v w v w2 2 3 3 3 3 2 2 2 3 3 2 1e e e e e¥ + ¥ = -( ) .

v w e e e e e e¥ = + +( ) ¥ + +( )v v v w w w1 1 2 2 3 3 1 1 2 2 3 3

v w

e e e

¥ = e
1 2 3

1 2 3

1 2 3

v v v

w w w

,

w e= Âwi i

v e= Â vi i
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where

But U1, U2, U3 is positively oriented, so by Lemma 3.2, e = sgnF. ◆

Exercises

1. Prove

Deduce that sgn F = sgn (F -1).

2. If H0 is an orientation-reversing isometry of R3, show that every
orientation-reversing isometry has a unique expression H0F, where F is 
orientation-preserving.

3. Let v = (3, 1, -1) and w = (-3, -3, 1) be tangent vectors at some point.
If C is the orthogonal transformation given in Exercise 4 of Section 1, check
the formula

4. A rotation is an orthogonal transformation C such that det C = +1. Prove
that C does, in fact, rotate R3 around an axis. Explicitly, given a rotation C,
show that there exists a number J and points e1, e2, e3 with ei • ej = dij such
that (Fig. 3.5)

C e e3 3( ) = .

C e e e2 1 2( ) = - +sin cosJ J ,

C e e e1 1 2( ) = +cos sinJ J ,

C C C C* sgn * * .v w v w¥( ) = ( ) ( ) ¥ ( )

sgn sgn sgn sgn .FG F G GF( ) = ◊ = ( )

e = ¥ = ( )( ) ( )( ) ¥ ( )( )e e e p p p1 2 3 1 2 3• * • * * .F U F U F U

FIG. 3.5
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(Hint: The fact that the dimension of R3 is odd means that C has an eigen-
value +1, so there is a point p π 0 such that C(p) = p.)

5. Let a be a point of R3 such that || a || = 1. Prove that the formula

defines an orthogonal transformation. Describe its general effect on R3.

6. Prove
(a) The set O+(3) of all rotations of R3 is a subgroup of the orthogonal
group O(3) (see Ex. 8 of Sec. 3.1).
(b) The set E +(3) of all orientation-preserving isometries of R3 is a sub-
group of the Euclidean group E(3).

3.4 Euclidean Geometry

In the discussion at the beginning of this chapter, we recalled a fundamental
feature of plane geometry: If there is an isometry carrying one triangle onto
another, then the two (congruent) triangles have exactly the same geometric
properties. A close examination of this statement will show that it does not
admit a proof—it is, in fact, just the definition of “geometric property of a
triangle.” More generally, Euclidean geometry can be defined as the totality
of concepts that are preserved by isometries of Euclidean space. For example,
Corollary 2.2 shows that the notion of dot product on tangent vectors
belongs to Euclidean geometry. Similarly, Theorem 3.6 shows that the cross
product is preserved by isometries (except possibly for sign).

This famous definition of Euclidean geometry is somewhat generous,
however. In practice, the label “Euclidean geometry” is usually attached only
to those concepts that are preserved by isometries, but not by arbitrary map-
pings, or even the more restrictive class of mappings (diffeomorphisms) that
possess inverse mappings. An example should make this distinction clearer.
If a = (a1, a2, a3) is a curve in R3, then the various derivatives

look pretty much alike. Now, Theorem 7.8 of Chapter 1 asserts that velocity
is preserved by arbitrary mappings F: R3 Æ R3, that is, if b = F(a), then b¢ =
F*(a ¢). But it is easy to see that acceleration is not preserved by arbitrary map-
pings. For example, if a(t) = (t, 0, 0) and F = (x2, y, z), then a≤ = 0; hence
F*(a≤) = 0. But b = F(a) has the formula b(t) = (t2, 0, 0), so b≤ = 2U1. Thus

¢ = Ê
Ë

ˆ
¯ ¢¢ = Ê

Ë
ˆ
¯a

a a a
a

a a ad
dt

d
dt

d
dt

d
dt

d
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in this case, b = F(a), but b≤ π F*(a≤). We shall see in a moment, however,
that acceleration is preserved by isometries.

For this reason, the notion of velocity belongs to the calculus of
Euclidean space, while the notion of acceleration belongs to Euclidean geom-
etry. In this section we examine some of the concepts introduced in Chapter
2 and prove that they are, in fact, preserved by isometries. (We leave largely
to the reader the easier task of showing that they are not preserved by 
diffeomorphisms.)

Recall the notion of vector field on a curve (Definition 2.2 of Chapter 2).
If Y is a vector field on a: I Æ R3 and F: R3 Æ R3 is any mapping, then =
F*(Y ) is a vector field on the image curve = F(a). In fact, for each t in I,
Y(t) is a tangent vector to R3 at the point a(t). But then (t) = F*(Y(t)) is a
tangent vector to R3 at the point F(a(t)) = (t).

(These relationships are illustrated in Fig. 3.6.) Isometries preserve the
derivatives of such vector fields.

4.1 Corollary Let Y be a vector field on a curve a in R3, and let F be an
isometry of R3. Then = F*(Y ) is a vector field on = F(a), and

Proof. To differentiate a vector field , one simply differenti-
ates its Euclidean coordinate functions, so

¢ = ÂY
dy
dt

Uj
j .

Y y Uj j= Â

¢ = ¢( )Y F Y* .

aY

a
Y

a
Y

FIG. 3.6
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Thus by the coordinate version of Theorem 2.1, we get

On the other hand,

But each cij is constant, being by definition an entry in the matrix of the
orthogonal part of the isometry F. Hence

Thus the vector fields F*(Y¢) and ¢ are the same. ◆

We claimed earlier that isometries preserve acceleration: If = F(a), where
F is an isometry, then ≤ = F*(a≤). This is an immediate consequence of the
preceding result, for if we set Y = a ¢, then by Theorem 7.8 of Chapter 1,

= ¢; hence

Now we show that the Frenet apparatus of a curve is preserved by isome-
tries. This is certainly to be expected on intuitive grounds, since a rigid motion
ought to carry one curve into another that turns and twists in exactly 
the same way. And this is what happens when the isometry is orientation-
preserving.

4.2 Theorem Let b be a unit-speed curve in R3 with positive cur-
vature, and let = F(b) be the image curve of b under an isometry F of R3.
Then

where sgnF = ±1 is the sign of the isometry F.

Proof. Note that is also a unit-speed curve, since

¢ = ¢( ) = ¢ =b b bF* .1

b

B F F B= ( ) ( )sgn * ,

t t= ( ) = ( )sgn *F N F N, ,

k k= = ( ), T F T* ,

b

¢¢ = ¢ = ¢( ) = ¢¢( )a aY F Y F* * .

aY

a
a

Y

¢ = ( ) =Â ÂY
d
dt

c y U c
dy
dt

Uij j i ij
j

i .

Y F Y c y Uij j i= ( ) = Â* .

F Y c
dy
dt

Uij
j

i* .¢( ) = Â
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Thus the definitions in Section 3 of Chapter 2 apply to both b and , so

Since F* preserves both acceleration and norms, it follows from the 
definition of curvature that

To get the full Frenet frame, we now use the hypothesis k > 0 (which
implies > 0, since = k). By definition, N = b≤/k ; hence using preced-
ing facts, we find

It remains only to prove the interesting cases B and t. Since the defini-
tion B = T ¥ N involves a cross product, we use Theorem 3.6 to get

The definition of torsion is essentially t = -B¢ • N = B • N¢. Thus, using
the results above for B and N, we get

◆

The presence of sgn F in the formula for the torsion of F(b) shows that
the torsion of a curve gives a more subtle description of the curve than has
been apparent so far. The sign of t measures the orientation of the twisting of
the curve. If F is orientation-reversing, the formula = -t proves that the
twisting of the image of curve F(b) is exactly opposite to that of b itself.

A simple example will illustrate this reversal.

4.3 Example Let b be the unit-speed helix

gotten from Example 3.3 of Chapter 2 by setting a = b = 1; hence c = .
We know from the general formulas for helices that k = t = 1/2. Now let R
be reflection in the xy plane, so R is the isometry R(x, y, z) = (x, y, -z). Thus
the image curve = R(b) is the mirror image
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of the original curve. One can see in Fig. 3.7 that the mirror has its usual
effect: b and twist in opposite ways—if b is “right-handed,” then is
“left-handed.” (The fact that b is going up and down is, in itself, irrele-
vant.) Formally: The reflection R is orientation-reversing; hence the theorem
predicts and Since is just the helix gotten in
Example 3.3 of Chapter 2 by taking a = 1 and b = -1, this may be checked
by the general formulas there.

Exercises

1. Let F = TC be an isometry of R3, b a unit speed curve in R3. Prove
(a) If b is a cylindrical helix, then F(b) is a cylindrical helix.
(b) If b has spherical image s, then F(b) has spherical image C(s).

2. Let Y = (t, 1 - t2, 1 + t2) be a vector field on the helix

and let C be the orthogonal transformation

Compute = C(a) and = C*(Y ), and check that

C Y Y C Y Y* * • • .¢( ) = ¢ ¢¢( ) = ¢¢ ¢ ¢¢ = ¢ ¢¢, ,a a a a

Ya

C =
-

-
Ê

Ë

Á
Á

ˆ

¯

˜
˜

1 0 0

0 1 2 1 2

0 1 2 1 2

.

a t t t t( ) = ( )cos sin, , ,2

bt t= - = - 1
2 .k k= = 1

2

b
bb

FIG. 3.7
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3. Sketch the triangles in R2 that have vertices

Show that these triangles are congruent by exhibiting an isometry F =
TC that carries D1 to D2. (Hint: the orthogonal part C is not altered if the
triangles are translated.)

4. If F: R3 Æ R3 is a diffeomorphism such that F* preserves dot products,
show that F is an isometry. (Hint: Show that F preserves lengths of curve 
segments and deduce that F-1 does also.)

5. Let F be an isometry of R3. For each vector field V let be the vector
field such that F*(V(p)) = (F(p)) for all p. Prove that isometries preserve
covariant derivatives; that is, show =

3.5 Congruence of Curves

In the case of curves in R3, the general notion of congruence takes the fol-
lowing form.

5.1 Definition Two curves a, b: I Æ E3 are congruent provided there
exists an isometry F of R3 such that b = F(a); that is, b(t) = F(a(t)) for all t
in I.

Intuitively speaking, congruent curves are the same except for position in
space. They represent trips at the same speed along routes of the same shape.
For example, the helix a(t) = (cos t, sin t, t) spirals around the z axis in exactly
the same way the helix b(t) = (t, cos t, sin t) spirals around the x axis. Evi-
dently these two curves are congruent, since if F is the isometry such that

then F (a) = b.
To decide whether given curves a and b are congruent, it is hardly practi-

cal to try all the isometries of R3 to see whether there is one that carries a to
b. What we want is a description of the shape of a unit-speed curve so accu-
rate that if a and b have the same description, then they must be congruent.
The proper description, as the reader will doubtless suspect, is given by cur-
vature and torsion. To prove this we need one preliminary result.

Curves whose congruence is established by a translation are said to be 
parallel. Thus, curves a, b: I Æ E3 are parallel if and only if there is a point

F p p p p p p1 2 3 3 1 2, , , , ,( ) = ( )

—V W.—V W
V

V

D D1 23 1 7 1 7 4 2 0 2 5 2 5 16 5: : ., , , , , , , , , , ,( ) ( ) ( ) ( ) ( ) -( )
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p in R3 such that b(s) = a(s) + p for all s in I, or, in functional notation,
b = a + p.

5.2 Lemma Two curves a, b: I Æ R3 are parallel if their velocity vectors
a ¢(s) and b¢(s) are parallel for each s in I. In this case, if a(s0) = b(s0) for some
one s0 in I, then a = b.

Proof. By definition, if a ¢(s) and b¢(s) are parallel, they have the same
Euclidean coordinates. Thus

where ai and bi are the Euclidean coordinate functions of a and b. But 
by elementary calculus, the equation dai/ds = dbi/ds implies that there is 
a constant pi such that bi = ai + pi. Hence b = a + p. Furthermore, if
a(s0) = b(s0), we deduce that p = 0; hence a = b. ◆

5.3 Theorem If a, b: I Æ R3 are unit-speed curves such that ka = kb and
ta = ±tb, then a and b are congruent.

Proof. There are two main steps:
(1) Replace a by a suitably chosen congruent curve F(a).
(2) Show that F(a) = b (Fig. 3.8).
Our guide for the choice in (1) is Theorem 4.2. Fix a number, say 0, in

the interval I. If ta = tb, then let F be the (orientation-preserving) isome-
try that carries the Frenet frame Ta(0), Na(0), Ba(0) of a at a(0) to the

d
ds

s
d
ds

s ii ia b( ) = ( ) for ,1 3� �

FIG. 3.8
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Frenet frame Tb(0), Nb(0), Bb(0), of b at b(0). (The existence of this isom-
etry is guaranteed by Theorem 2.3.) Denote the Frenet apparatus of =
F(a) by , , , , ; then it follows immediately from Theorem 4.2 and
the information above that

(‡)

On the other hand, if ta = -tb, we choose F to be the (orientation-
reversing) isometry that carries Ta(0), Na(0), Ba(0) at a(0) to the frame
Tb(0), Nb(0), Bb(0) at b(0). (Frenet frames are positively oriented; hence
this last frame is negatively oriented: This is why F is orientation-
reversing.) Then it follows from Theorem 4.2 that the equations (‡) hold
also for = F(a) and b. For example,

For step (2) of the proof, we shall show = Tb; that is, the unit tan-
gents of = F(a) and b are parallel at each point. Since (0) = b(0), it
will follow from Lemma 5.2 that F(a) = b. On the interval I, consider the
real-valued function f = • Tb + • Nb + • Bb. Since these are unit
vector fields, the Schwarz inequality (Sec. 1, Ch. 2) shows that

furthermore, • Tb = 1 if and only if = Tb. Similar remarks hold for the
other two terms in f. Thus it suffices to show that f has constant value 3. By
(‡), f(0) = 3. Now consider

A simple computation completes the proof. Substitute the Frenet for-
mulas in this expression and use the equations = kb, = tb from (‡). The
resulting eight terms cancel in pairs, so f ¢ = 0, and f has, indeed, constant
value 3. ◆

Thus, a unit-speed curve is determined but for position in R3 by its curvature
and torsion.

Actually the proof of Theorem 5.3 does more than establish that a and b
are congruent; it shows how to compute explicitly an isometry carrying a to
b. We illustrate this in a special case.

tk
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5.4 Example Consider the unit-speed curves a, b: R Æ R3 such that

where c = . Obviously, these curves are congruent by means of a reflec-
tion—they are the helices considered in Example 4.3—but we shall ignore
this in order to describe a general method for computing the required isom-
etry. According to Example 3.3 of Chapter 2, a and b have the same curva-
ture, ka = 1/2 = kb ; but torsions of opposite sign, ta = 1/2 = -tb. Thus the
theorem predicts congruence by means of an orientation-reversing isometry
F. From its proof we see that F must carry the Frenet frame

where a = 1/ , to the frame

where the minus sign will produce orientation reversal. (These explicit for-
mulas also come from Example 3.3 of Chapter 2.) By the remark following
Theorem 2.3, the isometry F has orthogonal part C = tBA, where A and B
are the attitude matrices of the two frames above. Thus

since a = 1/ . These two frames have the same point of application a(0) =
b(0) = (1, 0, 0). But C does not move this point, so the translation part of F
is just the identity map. Thus we have (correctly) found that the reflection 
F = C carries a to b.

From the viewpoint of Euclidean geometry, two curves in R3 are “the
same” if they differ only by an isometry of R3. What, for example, is a helix?
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It is not just a curve that spirals around the z axis as in Example 3.3 of
Chapter 2, but any curve congruent to one of these special helices. One can
give general formulas, but the best characterization follows.

5.5 Corollary Let a be a unit speed curve in R3. Then a is a helix if and
only if both its curvature and torsion are nonzero constants.

Proof. For any numbers a > 0 and b π 0, let ba,b be the special helix given
in Example 3.3 of Chapter 2. If a is congruent to ba,b, then (changing 
the sign of b if necessary) we can assume the isometry is orientation-
preserving. Thus, a has curvature and torsion

Conversely, suppose a has constant nonzero k and t. Solving the pre-
ceding equations, we get

Thus a and ba,b have the same curvature and torsion; hence they are 
congruent. ◆

Our results so far demand unit speed, but it is easy to weaken this 
restriction.

5.6 Corollary Let a, b: I Æ R3 arbitrary-speed curves. If

then the curves a and b are congruent.

The proof is immediate, for the data ensures that the unit speed parame-
trizations of a and b have the same curvature and torsion—hence they are
congruent. But then the original curves are congruent under the same 
isometry since their speeds are the same.

The theory of curves we have presented applies only to regular curves with
positive curvature k > 0, because only for such curves is it possible to define
the Frenet frame field. However, an arbitrary curve a in R3 can be studied by
means of an arbitrary frame field on a, that is, three unit-vector fields E1, E2,
E3 on a that are orthogonal at each point.
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At a critical point later on, we will need this generalization of the congru-
ence theorem (5.3):

5.7 Theorem Let a, b: I Æ R3 be curves defined on the same interval.
Let E1, E2, E3 be a frame field on a, and F1, F2, F3 a frame field on b. If

(1) a ¢ • Ei = b¢ • Fi (1 � i � 3),
(2) Ei¢ • Ej = Fi¢ • Fj (1 � i, j � 3),

then a and b are congruent.
Explicitly, for any t0 in I, if F is the unique Euclidean isometry that sends

each Ei(t0) to Fi(t0), then F(a) = b.

Proof. Let F be the specified isometry. Since F* preserves dot products,
it follows that the vector fields = F*(Ei) for 1 £ i £ 3 form a frame field
on = F(a). And since F* preserves velocities of curves and derivatives
of vector fields, by using condition (1) in the theorem, we find

(*)

Similarly, from condition (2), we get

(**)

In view of this last equation, orthonormal expansion yields

with the same coefficient functions aij. Note that aij + aji = 0; hence aii = 0.
(Proof: Differentiate • = dij.)

Now let f = • Fi. We prove f = 3 as before: f(t0) = 3, and

Thus each • Fi = 1, that is, and Fi are parallel at each point. By (*)
the same is true for

Since a(t0) = b(t0), Lemma 5.2 gives the required result, F(a) = = b.
◆

5.8 Remark Existence theorem for curves in R3. Curvature and torsion
tell whether two unit-speed curves are isometric, but they do more than that:

a

¢ = ¢( ) ¢ = ¢( )Â Âa a b b• • .E E F Fi i i iand

EiEi

¢ = ¢ + ¢( ) = +( ) =Â Âf E F E F a a E Fi i i ij ji j i
i j

i• • • .0
,

E jÂ
E jEi

¢ = ¢ =Â ÂE a E F a Fi ij j
j

i ij j
j

and ,

E t F t E E F F i ji i i j i j0 0 1 3( ) = ( ) ¢ = ¢ ◊and for• , .� �

a b a bt t E F ii i0 0 1 3( ) = ( ) ¢ = ¢and for• • .� �

a
Ei
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Given any two continuous functions k > 0 and t on an interval I, there exists a
unit-speed curve a: I Æ R3 that has these functions as its curvature and torsion.
(As we know, any two such curves are congruent.) Thus the natural descrip-
tion of curves in R3 is devoid of geometry, consisting of a pair of real-valued
functions.

The proof of the existence theorem requires advanced methods, so we have
preferred to illustrate it by the corresponding result for plane curves 
(Exercises 7–10). Though simpler, this 2-dimensional version has the advan-
tage that plane curvature is not required to be positive.

Exercises

1. Given a curve a = (a1, a2, a3): I Æ R3, prove that b: I Æ R3 is con-
gruent to a if and only if b can be written as

where ei • ej = dij.

2. Let E1, E2, E3, be a frame field on R3 with dual forms qi and connection
forms wij. Prove that two curves a, b: I Æ R3 are congruent if qi(a ¢) = qi(b¢)
and wij(a ¢) = wij(b¢) for 1 � i, j � 3 (Hint: Use Thm. 5.7.)

3. Show that the curve

is a helix by finding its curvature and torsion. Find a helix of the form 
a(t) = (acos t, asin t, bt) and an isometry F such that F(a) = b.

4. (Computer; see Appendix.) (a) Show that the curves

defined on the entire real line, have the same speed, curvature, and torsion.
(b) Find formulas for T and C such that the isometry F = TC carries a to b
and verify explicitly that F(a) = b. (Hint: Use Ex. 5 of Sec. 2.)

5. (Computer optional.) Is the following curve a helix? Prove your answer.

6. Congruence of curves.
(a) Prove that curves a, b: I Æ R2 are congruent if a = b and they have
the same speed.

k̃k̃

c t t t t t t t t t t( ) = - + + + + + -( )2 2 2 2 4 2 4cos sin cos sin cos sin ., ,

a bt t t t t t t t t t t t( ) = + - +( ) ( ) = + - -( )2 2 3 2 3 2 31 2 1 2, , , , , ,

b t t t t t t( ) = + -( )3 2 3sin cos sin, ,

b a a at t t t( ) = + ( ) + ( ) + ( )p e e e1 1 2 2 3 3,

k̃
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(b) Show that the space curves

are congruent. Find an isometry that carries a to b.

7. Given a continuous function f on an interval I, prove—using ordinary
integration of functions—that there exists a unit-speed curve b(s) in R2 for
which f(s) is the plane curvature. (Hint: Reverse the logic in Ex. 8 of Sec. 2.3.)

8. Show that b(s) = (x(s), y(s)) in the preceding exercise is given by the solu-
tions of the differential equations

with initial conditions x(0) = y(0) = j(0) = 0. (These initial conditions suffice,
since any other b differs at most by a Euclidean isometry and a reparame-
trization s Æ s + c.)

Explicit integration is rarely possible; the following exercises use numeri-
cal integration.

9. (Numerical integration, computer graphics.) Write computer commands
that (a) given f(s), produce a numerical description of the solution curve b(s)
in the preceding exercise, and (b) given f(s), plot the solution curve.

10. (Continuation.) Plot unit-speed plane curves with the given plane cur-
vature function f on at least the given interval.

(a) f(s) = 1 + es, on -6 £ s £ 3.
(b) f(s) = 2 + 3 cos3s, on 0 £ s £ 2 p.
(c) f(s) = 3 - 2s2 + s3, on -2.5 £ s £ 3.5.

Adjust scales on axes as needed.

3.6 Summary

The basic result of this chapter is that an arbitrary isometry of Euclidean
space can be uniquely expressed as an orthogonal transformation followed
by a translation. A consequence is that the tangent map of an isometry F
is, at every point, essentially just the orthogonal part of F. Then it is a 
routine matter to test the concepts introduced earlier to see which belong to
Euclidean geometry, that is, which are preserved by isometries of Euclidean
space.

¢( ) = ( ) ¢( ) = ( ) ¢( ) = ( )x s s y s s s f scos sin ,j j j, ,

a bt t t t t t t( ) = ( ) ( ) = -( )2 02 2, , and , ,
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Finally, we proved an analogue for curves of the various criteria for con-
gruence of triangles in plane geometry; namely, we showed that a necessary
and sufficient condition for two curves in R3 to be congruent is that they have
the same curvature and torsion (and speed). Furthermore, the sufficiency
proof shows how to find the required isometry explicitly.


