
Spezialschulteil des Albert-Schweitzer-Gymnasiums Erfurt

Final course paper
School years 2018 to 2020

Determination of the drag coefficient of laser
scanned bodies using a fluid flow simulation

in 3D space

Subject supervisor: Mr. Brenner
Course paper supervisor: Mrs. Bangsow-Bösa

Students: Adrian Kühn (12b)
Frank Long (12a)
Paul Alexander Marschall (12a)

Date: 20.12.2019

Contents

1 Mathematical-physical consideration of fluids 4
1.1 The physical principles of fluid dynamics . 4
1.2 On the linear approximation problem . 5

2 Microscopic approach to flow simulations 6
2.1 Motivation and basic idea . 6
2.2 Implementation of a test program . 6
2.3 Evaluation of this simulation method . 6

3 Implementation of the computer program for simulating flowing fluids 7
3.1 Procedure for program development . 7

3.1.1 Introduction to the Lattice-Boltzman method . 7
3.1.2 Implementation of the simulation method in 2D space . 7
3.1.3 Implementation of the simulation method in 3D space . 8
3.1.4 Optimization of the flow simulation by collision thermal . 8

3.2 Virtual bodies in the program . 11
3.2.1 Preview of handling bodies in the program . 11
3.2.2 Importing bodies and handling file formats . 11
3.2.3 Conversion of geometric solids to boolean solids . 11
3.2.4 Direct import of boolean bodies . 12
3.2.5 Graphic representation of bodies . 12

3.3 Basic structure of the simulation program . 13

4 Application of our simulation program 13
4.1 The connection between theory and reality . 13
4.2 Optimization of the Cw value calculation . 14
4.3 Results of the drag coefficient calculation . 15

4.3.1 Results for simple bodies . 15
4.3.2 Lamborghini results and scanned body . 16

4.4 Error analysis for the simulation method we developed . 17
4.5 Result classification . 17

5 Reflection on our work 18

6 Appendix 19

2

Introduction

Every form of mobility on our planet depends on its level of efficiency. This is how we transferred the aerodynamic
properties of penguins and seals to our cars, trains and planes. But we also need to understand the principle behind
the motion of a solid through a fluid in order to advance our technique. The decisive factor here is the consideration
of the drag coefficient, also known as the Cw-value. Investigations of this degree of aerodynamic slippage of a body
are currently carried out in wind tunnels. But these systems are expensive and maintenance is difficult. So we asked
ourselves whether these examinations could alternatively be carried out with the help of appropriate software.
In our seminar paper we want to create a program that makes it possible to analyze flows around bodies using a virtual
wind tunnel. For this we have to deal with the basic physical and mathematical models of fluid dynamics. We then
plan to transfer these models to a numerically feasible simulation method. In this method, it is important to define
the specifications of our virtual wind tunnel as well as variables that can be analyzed. Finally, we can calibrate our
simulation on standard bodies.
With our program it should be possible to import three-dimensional objects. For this purpose, the physical proper-
ties of the fluid flowing around are defined and inserted into a corresponding simulation space. A simulation is then
carried out in which the fluid flows around the body. Here, as the core of our work, specific data is collected, which we
can later use to deduce the Cw value of the body. Finally, we want to implement a visualization of the flow that is as
comprehensive as possible and illustrate the collected data.
We chose this topic ourselves because we are very interested in flow problems, especially in technology. With our pro-
gram it should be possible for hobbyists or students to examine objects with regard to their aerodynamic properties.

At this point we would like to thank our supervisor Mr. Brenner for his active support regarding the understand-
ing of physical and mathematical models. We would also like to thank the student research center and thus Mr. Paulig
and Dr. Wagner, who made it possible for us to work on a wind tunnel and provided us with a 3D scanner. We would
also like to thank our project supervisor Ms. Bangsow-Bösa for her support in preparing the written part of our work.
We would also like to thank our families for their moral support and everyone else who helped us to accomplish our
tasks.

3

1 Mathematical-physical consideration of fluids

1.1 The physical principles of fluid dynamics

The aim of our work is to determine the flow resistance coefficient of bodies by simulation. In the course of this, we
will first deal with the physical basics of fluid dynamics in this chapter. Accordingly, we first consider the macroscopic
model of fluid dynamics, which is based on the Navier-Stokes equations. This describes the dynamics of volume
elements in the fluid. However, the equations go far beyond the school material, which is why we have dealt with
the basic elements of the equations. Operators and operands that are initially unknown to us are used, which can be
understood from equations (1) to (5).[35, 36]

∇· v⃗ = 0 (1)

ρ

(
d v⃗

d t

)
=−∇p +µ∇2v⃗ +ρF (2)

ρ(
∂u

∂t
+u

∂u

∂x
+ v

∂u

∂y
+w

∂u

∂z
) = ρgx − ∂p

∂x
+µ(

∂2u

∂x2 + ∂2u

∂y2 + ∂2u

∂z2) (3)

ρ(
∂v

∂t
+u

∂v

∂x
+ v

∂v

∂y
+w

∂v

∂z
) = ρg y − ∂p

∂y
+µ(

∂2v

∂x2 + ∂2v

∂y2 + ∂2v

∂z2) (4)

ρ(
∂w

∂t
+u

∂w

∂x
+ v

∂w

∂y
+w

∂w

∂z
) = ρgz − ∂p

∂z
+µ(

∂2w

∂x2 + ∂2w

∂y2 + ∂2w

∂z2) (5)

The equations describe the behavior of incompressible fluids. Equation (1) represents the conservation of mass. Equa-
tion (2), whose three components are written out again separately in equations (3) to (5), represents the conservation
of momentum, i.e. Newton’s second law, in the fluid. Both equations include the operator Nabla (∇), which can be
viewed as a vector. Depending on the application, this generates a vector field or a scalar field. In equation (1), the
operator ∇ comes before the physical variable speed. This is also a vector, which is why the scalar product of both
quantities creates a scalar field, the so-called divergence. This describes the occurrence of sinks and sources in the
vector field of the velocity. If it is equal to zero, both phenomena do not occur and, as mentioned, we can assume
conservation of mass. In the second equation, ∇ comes before pressure. The pressure in a fluid is a scalar quantity.
The application of ∇ results in a vector field, the so-called gradient. This points in the direction of the greatest pressure
change and thus represents the direction of the acting force. The change in momentum is described by all the acting
forces, which are represented by the right-hand side of the equation.
In order to be able to apply the Navier-Stokes equations, one needs initial conditions. We want to understand such
an application in the following using a simple example. The choice fell on a funnel through which it flows (compare
Figure 1).

Since turbulence is difficult to capture numerically, a laminar flow is assumed.
So that the velocity at individual points in the flow field is time-independent, the
flow is still stationary. We also assume that the fluid is ideal, which also satisfies
the incompressibility requirement of the Navier-Stokes equations.
The goal is now to set up a velocity equation for volume elements of the fluid. P0 is
the starting point of a volume element, we are looking for the velocity at a specific
point on the streamline. The cone spans from H to h. For the mathematical model
we assume that the velocity in plane H is 0 and that the volume elements in a ray
move towards the focal point 0a. We assume that the speed on this orbit increases
linearlyb. Another assumption is that the speed is the same within a plane. So we
can use the Torricelli formula v =√

2g (H − z) for the magnitude of the velocity.

aThe origin of coordinates
bYou can find the corresponding orbital equations in the appendix on page 22.

Figure 1: Model of the trajectory of
a volume element in a funnel flow
[61]

Apart from gravity, fluid is only affected by funnel walls. We assume Equation (6) for the location-dependent velocity
vector.

v⃗ =
√

2g (H − z)√
ϱ2 + z2

 −ϱ
0
−z

 (6)

4

We have to check this equation below. For this we put them into equation (1), which we adapt to the cylindrical
coordinate system [20].

ϱ

z
= ϱ0

z0
(7)

ϕ=ϕ0 (8)

∇· v = 1

ϱ

d

dϱ
(ϱvϱ)+ 1

ϱ

d

dϕ
(vϕ)+ d

d z
vz (9)

The result is the expression to be understood in equation (10).

∇· v = 1

ϱ

d

dϱ
(ϱ

√
2g (H − z)(−ϱ)√

ϱ2 + z2
)+ d

d z
(

√
2g (H − z)(−z)√

ϱ2 + z2
) =− ϱ(4H −5z)√

(ϱ2 + z2)2g (H − z)
̸= 0 (10)

This represents an inequality, so we can conclude that Equation (6) does not satisfy Equation (1). So the divergence is
not zero for all points in the funnel.
An alternative method could be to find an alternative expression for equation (6) using computer approximation
methods for equation (2). An exact solution of equation (2) applied to the funnel flow is not known to us at the
moment.
In summary, it can be concluded that the assumed equation for the velocity v is wrong.

1.2 On the linear approximation problem

In chapter 1.1 we mentioned computer-aided approximation methods that can be applied to the Navier-Stokes equa-
tions. One of these methods is the linear approximation, which we now want to take a closer look at.
The general form of such an approximation is the explicit Euler method. This is a simple method for solving a dif-
ferential equation numerically. In it, the growth of the graph is calculated at predetermined intervals, which then
completes the adjoining graph.1

The numerical method has to be applied, since an explicit representation of the solution is not possible for numerous
differential equations.

In the following example, the y-value of a function is present as an
initial value. Equation (11) can be used to determine the following y-
values:

f (x +∆x) = f (x)+ f ′(x)∆x + r (x,∆x) (11)

However, in the 3D coordinate systems used in our simulation, three
values change, replacing Equation (11) with Equation (12).

f (x0 +∆x, y0 +∆y) ≈ f (x0, y0)+ ∂ f

∂y
∆y + ∂ f

∂x
∆x (12)

The slope of the coordinate planes is calculated using the respective
partial derivative. A 3D graph is obtained.
The ≈ sign in equation (12) comes from neglecting r (x,∆x). For
example, r (compare Figure 2) is the distance from the derivative to
the actual function, which is why the adjoining graph moves further
and further away from the original graph. However, r gets smaller the
smaller ∆x is. Therefore, one can disregard r when solving differential
equations numerically, because one calculates here with minimal ∆x
values.

Figure 2: Approximation of a function using its
derivative [61]

In order to be able to determine whether a graph is getting steeper or flatter, you need the 2nd derivative of its func-
tion. Finally, equation (13) is obtained from equation (11). We approximate the additional term r using the mean
value theorem.

f (x0 +∆x) ≈ f (x0)+ f ′(x0)∆x + f ′′(x0)

2
∆x2 (13)

As an example of such a calculation, we now consider a function f (x) = ln(x). Since the derivative of ln is already
known, equation (14) is obtained for y .

y ≈ l n(x)+ 1

x
∆x + (− 1

x2)∆x2 (14)

We set ∆x to 0.01 and consider the function and its approximation in the interval from 5 to 5.07. We now calculate
the points of approximation numerically with the help of a computer. Now we can find the discrepancy between the
calculated points. This amounts to 0.02 for the x value of 5.07.

1Appendix p.22 Figure 16: Explicit Euler method

5

2 Microscopic approach to flow simulations

2.1 Motivation and basic idea

In Chapter 1.1 we found that a simulation based on macroscopic models is hardly feasible. In this chapter we try to
implement a simulation based on the laws of thermodynamics. So we change the perspective from the macroscopic
to the microscopic view of fluids.
The basic idea is to simulate the components of a fluid, atoms or molecules. What is meant is to determine a number
N of the most favorable possible components and to give them a simulation space using natural constants. In terms
of computer science, the individual component is now an object to which we can assign attributes and methods.
Likewise, the body to be examined is an object, but of a different class. With the help of their methods, we can try to
make these objects interact as naturally as possible in the simulation space. Based on certain events that occur, it is
then possible to conclude how slippery the test body is in terms of aerodynamics.

2.2 Implementation of a test program

We initially selected helium as the fluid. Helium is an inert gas, which is why, as a pure substance, it does not form any
molecules. The components of the fluid can therefore be viewed geometrically as spheres, helium atoms. We set the
temperature of our simulation room to 0◦C , or 273.15K . Now we can define all parameters of our simulation space
using the kinetic gas theory and natural constants. They can be found in Table 1.

Table 1: Defined and determined parameters of our simulation room [2]

Size Variable Value Calculation / Formula / Constants

Temperature T 273,15K Determination
Number of atoms N z.B. 100 Determination, variable
Atomic radius r Atom 3,1 ·10−11m Natural Constants
Atomic volume VAtom 1,2 ·10−31m3 VAtom = 4

3 ·π · r 3
Atom

Atomic mass unit u 1,660539040 ·10−27kg Natural Constants
Atomic mass mAtom 6,64647 ·10−27kg 4,0026 ·u
Bolzmann constant K 1,38065 ·10−23 J ·K −1 Natural Constants
Density of helium (normal pressure) ρ 0,1785kg ·m−3 Natural Constants, for T = 273,15K
∅ kinetic energy of an atom Eki neti sch 5,65687 ·10−21 J Eki neti c = 3

2 ·K ·T

∅ speed of an atom v∅ 1304,69m · s−1 v∅ =
√

2 ·Eki neti c ·m−1
Atom

However, this does not yet define the simulation space as space. We choose it here first as a cube whose edge length s
can be determined using the above values. So we are looking for: s(N) (compare equation (15)).

s(N) =V (N)
1
3 = (N ·VAtom ·C)

1
3 (15)

The volume of the simulation space does not correspond to the sum of the atomic volumes. However, there is a fixed
connection between the two variables, which is compensated here using C . C can be determined from the density of
helium. The result is the following expression (16):

C = mAtom

ρ ·VAtom
= 310303,45 (16)

Now a number N of atoms can be defined. You get a random starting position and a random initial speed within
the simulation space. The amount of the initial speed can deviate from the calculated average speed of the atoms.
The basis for this is the energy distribution according to Boltzmann. The atoms initially have only one method that
updates their position based on a time step and their velocity. In addition, they bounce off completely elastically at
the boundaries of the simulation space. We don’t let any forces act on the atoms, and they don’t collide with each
other. We test this program primarily for its suitability with regard to its runtime. 2

2.3 Evaluation of this simulation method

The simulation runs smoothly up to a number of 5000 atoms without the effects of force or more complex methods of
updating the atoms or components. With this number of atoms we are in the area of an edge length of the simulation
space of 10−8m. In addition, we have so far ignored the interaction of the particles with each other. Calculating
collisions of balls in a three-dimensional space is not a problem. Ultimately, however, we need to give the system a
clock that updates it in certain time steps. Tracking interactions of more than two objects within one time step would
further increase the computational complexity of the program. The microscopic approach is therefore not suitable
for flow simulation.

2You can find a visualization in the appendix: page 23, figure 17

6

3 Implementation of the computer program for simulating flowing fluids

3.1 Procedure for program development

3.1.1 Introduction to the Lattice-Boltzman method

Both the macroscopic and the microscopic observation of the fluids could not lead to a satis-
factory fluid simulation. Accordingly, we now use the mesoscopic viewing level, which acts be-
tween the others. Here we use simulation methods of numerical fluid mechanics, which solve
the complexity of the fluid-mechanical problems, based on the Navier-Stokes equations, ap-
proximately and numerically. Instead of simulating individual particles, computational grids
are now used as an approximation, which is illustrated in Figure 3. The most common sim-
ulation methods in computational fluid mechanics for simulating flowing fluids are the finite
difference method (FDM) and the finite volume method (FVM). However, we did not apply
these methods directly and instead switched to the Lattice-Boltzmann method (LBM). From
our point of view, the Lattice-Boltzmann method was clearer, more efficient and easier to im-
plement in a programming language. Due to the internal structure, which includes a low mem-
ory and computing requirement per cell, the method is suitable, among other things, for the
calculation of flows in complex geometries.
The Lattice-Boltzmann method was developed in the late 1980s [13] and has its theoretical ba-
sis in statistical physics. As already mentioned above, the simulation space or the simulation
level is discretized by a grid. The interaction of the microscopic particles is described by the
Boltzmann equation. (17)[13](

∂

∂t
+ v⃗ ·∇x⃗ +

F⃗

m
·∇v⃗

)
f (⃗x, v⃗ , t) = ∂ f

∂t

∣∣∣∣
Stoß

(17)

The left side of the equation represents the distribution density of a fluid as a total time
derivative. This distribution density is described by the collision integral on the right side of
the equation.

Figure 3: Sub-
steps of the Lattice-
Boltzmann method
[56]

First we go into the Lattice-Boltzmann method in two-dimensional space, i.e. in the plane. As mentioned above, the
plane is divided into many equal squares, so-called cells, by a grid. Eight direction arrows and one zero arrow are
assigned to each cell. The directional arrows represent how likely the velocity of the particles associated with a cell is
in the direction of the arrow at that cell. A fluid particle can remain in the same place per time step or move into the
respective adjacent cells of the square lattice.
The algorithm can be divided into two sub-steps, the flow step and the collision step. In the collision step, the arrows
from the neighboring cells collide in the cell to be calculated. Depending on which simulation is aimed at, collision
terms with equilibrium functions can be added to the arrows, which depend on the viscosity of the fluid.
However, we did not apply these collision theorems in the first step of our program development and replaced them
with self-developed functions in order to keep the program as simple as possible.
In the flow step, all eight directional arrows are forwarded to the next grid point according to their direction. The zero
arrows are not changed, so the particles of the zero arrow remain in the cell. The arrows shifted in this way again form
the initial situation for the next collision step.

3.1.2 Implementation of the simulation method in 2D space

We implemented the derived simulation method using the Python programming language. This program is based on
a finite loop with Upd ate_F lui d s, F r i ct i on, Resonant , Show_F lui d s and Obst acl e functions.
In the first Upd ateF l ui d s function, the arrows are shifted in the direction of movement to the next cells and
displayed in gray in Show_F lui d s depending on the arrow density of the respective cell on the display area. In the
F r i ct i on function, the arrow sizes are reduced by a constant and reset one cell, so that the fluid does not move
infinitely far in space. The function Ei g enosci l l at i on simulates the propagation of the particles, independently of
Upd ate_F lui d s, by dividing each arrow in a cell into the arrows with the same arrow direction in the surrounding
cells. The reflection of the particles on the obstacle is processed by the obst acl e function. The obstacle is represented
by the edge cells of the obstacle. These are colored red in Figure 4.
Each obstacle cell is assigned a reflection angle between 0◦ and 360◦, which describes the reflection of the fluid at this
cell. If an obstacle cell is to have several different reflection angles, each side of the square can also be defined as a
reflection side, where the fluid is reflected at a 90◦ angle. Furthermore, the obstacle must be continuously mapped
with obstacle cells, so that in the case of a slope, the corners are not the connection to the next obstacle cell, but rather
the edges of an intermediate obstacle cell, colored blue in Figure 4. This means that each incline is represented by a
step shape and it is also guaranteed that no particles can get through the incline into the interior of the obstacle using
the Upd ate_F lui d s function. However, at some reflection angles, the fluid can still be reflected into the interior of

7

the obstacle. If this is the case, the fluid moves through the cells of the interior of the obstacle, colored green in Figure
4, and is released back out into the plane at the end of the obstacle without reflection.
Furthermore, the parameters viscosity, flow resistance, propagation speed and size of the arrow directions can be
defined in the program.
In order to better understand the particle movement, we have created a particle wall in Figure 4 on the left (600x600)
which is 400 cells high and 2 cells wide.

Figure 4: Graphic output of our flow simulation in two-dimensional space with different fluid sources [61]

In reality, however, in a flow simulation, the entire space is filled with flowing particles. This simulation is shown in
Figure 4 on the right (900x600) with a simple wall as the obstacle. The fluid source takes up the entire space.

3.1.3 Implementation of the simulation method in 3D space

In the two-dimensional model, 8 directional arrows were used. In three-dimensional space, on the other hand, we
work with 26 directional arrows. The program structure is similar to the 2D model.
Only the angle input of the individual obstacle cells differs. For each obstacle cell, a reflection angle must be stored
once, which determines the reflection in the two-dimensional plane and another reflection angle, which defines the
reflection perpendicular to the two-dimensional plane. This allows each obstacle to be clearly displayed.
Instead of Tkinter, the Poly3DCollection module from Matplotlib is now used for the display.
Figure 5 above shows the reflection from any body without the Resonant and F r i ct i on functions. If one includes
the friction and natural vibration, the result is shown in Figure 5 below.

Figure 5: The graphical output
of our flow simulation in three-
dimensional space with various
flow functions [61].

Unfortunately, at the end of these
two program implementations, we
had to admit that they were too
slow and not suitable for real-time
displays. Each calculation step
required 2 seconds in 3D space at
the above resolution.

In order to be able to display a smooth simulation, you would have had to take a picture of each calculation step and
then edit it into a greatly accelerated video. In addition to the time problem, there were other errors in the simulation
that were not negligible. The accumulations of fluid in front of the obstacles have increased with each time step and
have only slightly leveled off at a stable level. In addition, for an incompressible gas, the density in each cell should be
the same. This requirement was also not met in our simulations.

3.1.4 Optimization of the flow simulation by collision thermal

Our first attempt to replace the collision term with the simplified functions F r i ct i on and Resonant was ultimately
unsuccessful and we had to look more closely at the Boltzmann equation.
First, however, we optimized the flow step in our program and switched from large lists to array systems by Numpy to

8

make the flow step more efficient. We have also shortened the very time-consuming reflection angle calculation. Now
the particles are reflected towards their original position.
Ultimately, the biggest change was the use of the collision term and the associated equilibrium function in the collision
step, which replaces the F r i ct i on and Resonant functions more efficiently and realistically. These allow each cell to
have the same density of particles. This enables flow animation based on particle velocities. These will be explained
in more detail below.
The Lattice-Boltzmann method is based on a discretization of the BGK equation3, which is a simplification of the
Boltzmann equation. Equation (18) is solved: [16]

Ni (t +1, x + ci) = (1−ω)Ni (t , x)+ωNi e (t , x) (18)

This results in the Boltzman-Maxwell distribution (19): [14, 16]

f (v)d v =
(m

2πkT

) 3
2

4πv2e−
mv2

2kT d v (19)

The equilibrium distribution required for the Lattice-Boltzmann method (20) is obtained from the Taylor expansion
of the Maxwell distribution: [16]

D(v⃗) −→ωi

[
1+ 3e⃗i · u⃗

c
+ 9

2

(
e⃗i · u⃗

c

)2

− 3

2

|u⃗|2
c2

]
(20)

Where c=1 and wi has a different value for each direction arrow. The different values for wi result from the fact that the
direction arrows, which run horizontally or vertically, cover a smaller distance per flow step than the arrows running
diagonally. Some arrows (compare Figure 6) would therefore move faster per calculation step. However, since this
does not correspond to reality, the following weightings must be introduced for all arrows (compare formulas (21) to
(32)): [16]

e⃗0 = 0 (21)

e⃗1 = (1,0) (22)

e⃗2 = (0,1) (23)

e⃗3 = (−1,0) (24)

e⃗4 = (0,−1) (25)

e⃗5 = (1,1) (26)

e⃗6 = (−1,1) (27)

e⃗7 = (−1,−1 (28)

e⃗8 = (1,−1) (29)

ω0 = 4

9
(30)

ω1 =ω2 =ω3 =ω4 = 1

9
(31)

ω5 =ω6 =ω7 =ω8 = 1

36
(32)

Figure 6: Representation of arrow directions with associated weights [57]

Ultimately, the equilibrium function is based on the laws of fluid dynamics and describes the behavior of the flowing
particles in an ideal, incompressible gas. In simplified terms, one can say that the equilibrium function in the collision
step has the task of balancing several cells with different particle velocities at the same densities. Finally, in order to
obtain the final equilibrium function used in our program, the sum (density) ρ of the velocities of a cell must be
multiplied by the respective equilibrium function. With this we get the expression (33): [16]

neq
i = ρωi

[
1+3e⃗i · u⃗ + 9

2

(
⃗ei · u⃗

)2 − 3

2
|u⃗|2

]
(33)

In order to obtain the new velocities of each cell from the equilibrium function, the following term must be applied
for each cell velocity (34): [16]

nnew
i = nol d

i +ω
(
neq

i +nol d
i

)
(34)

Hereω can theoretically have a value between 0 and 2 and essentially reflects the viscosity of the fluid. The viscosity ν
is calculated as follows (35): [16]

ν= 1

3

(
1

ω
− 1

2

)
(35)

3Bhatnagar–Gross–Krook - equation

9

Figure 7: Updated two-dimensional flow
simulation for laminar and turbulent flow
[61]

However, depending on the flow velocity u0 of the fluid, instabilities in
the simulations already occur at viscosity values above 1.96 and below
0.25.
By optimizing the collision step and the flow step, we were able to
speed up our program in the two-dimensional area by a factor of about
100. Figure 7 shows 2 simulations of a simple wall as an obstacle with
the new program.
The wake vortices are clearly visible in the lower simulation in Fig-
ure 7 behind the obstacle. They are an important feature of a realistic
simulation. Because irregular wake vortices occur in every wind tun-
nel. This also confirms the correctness of the underlying fluid dynamic
models and the equilibrium function. Because with the old 2D pro-
gram, it was not possible for us to generate wake turbulence behind
the obstacle. Nevertheless, the wake turbulence can only be generated
under certain parameter settings. Accordingly, the viscosity must be
very small in relation to the speed and the factor w must therefore be
very large. This connection follows directly from the physical flow the-
ory with the Reynolds number. The Reynolds number results from (36):
[32]

Re = vm ·d

ν
(36)

The higher the speed and the lower the viscosity, the higher the Reynolds number. The relationship between viscosity
and speed is shown in Figure 30 in the appendix. If the Reynolds number exceeds a critical value, the laminar flow
turns into a turbulent flow. Experiments have succeeded in determining the critical Reynolds number at 2040±10. A
flow is laminar if turbulence and other imbalances break down again due to external stimuli, such as an obstacle. The
smaller the Reynolds number, the faster the turbulence dissolves. However, if the turbulences no longer dissipate or
become even stronger, the flow is turbulent.

Figure 8: Representation of turbulent flow in our simulation program [61]

In our flow simulations, we can generate wake vortices (compare Figures 7 and 8) and thus exceed the critical
Reynolds number. However, we still need external stimulation and imbalance in order to generate turbulence and
ultimately wake turbulence. We create these by either creating asymmetric obstacles or obstacle combinations, which
can be seen in the middle and right part of Figure 8, or omitting the obstacle reflection of an edge of a cell, which is
shown in the left part of Figure 8.

The collision term in three-dimensional space

Of course, we have also implemented the new collision and flow steps in the three-dimensional realm. How-
ever, we first had to check what number of arrows would work best for our simulations. Because in three-dimensional
space, the Latice-Boltzmann method distinguishes between 15-(D3Q15), 19-(D3Q19) and 27-(D3Q27) arrows. We
tried the last two models and could not find any significant difference in the simulations. So we opted for the D3Q19
model in favor of the runtime. However, it must be noted that the weighting of the individual arrows must be changed
again for a stable simulation. The new weights are shown in Table 2.

Model W0 W1 W2 W3

D1Q3 2/3 1/6 0 0
D2Q9 4/9 1/9 1/36 0

D3Q15 2/9 1/9 0 1/72
D3Q19 1/3 1/18 1/36 0
D3Q25 1/3 1/36 0 0

Table 2: Weighting factors of the different simulation mod-
els of the LBM method [17]

10

With the new program for 3D simulations we can even achieve a speed increase by a factor of 500 compared to
the old program.
You can see an example of a three-dimensional flow simulation with wake vortices in Figures 9 and 10.

Figure 9: Three-dimensional flow simulation with hori-
zontal wake vortices [61]

Figure 10: Three-dimensional flow simulation with verti-
cal wake vortices [61]

In summary, we are satisfied with the resulting programs and can use them to calculate the drag coefficients of obsta-
cles.

3.2 Virtual bodies in the program

3.2.1 Preview of handling bodies in the program

Since we want to do 3D simulations with the help of our program, we need a way to deal with bodies. In this case
bypass means:

(i) to uniquely define and store them as well

(ii) to perform calculations on them.

Since point (i) should not fill the core part of our work, we decided to use existing software to create bodies in digital
form.

3.2.2 Importing bodies and handling file formats

In graphics or in 3D editing programs, bodies are represented using polygon geometry. A body is therefore a polygon
compound and consists of flat N-corners. Curves and non-planar surfaces, as they occur in free body geometry, can
only be approximated. This approximation is sufficient since we will later convert the geometric solids into boolean
solids. They are rendered into a 3D grid, with each cell of space storing the boolean value that indicates whether it is
part of the body.
We can create geometric bodies with the help of a 3D editing program. The resulting data on the polygons of the
polygon composite can then be exported. Many different file formats are available for this. In order to be able to read
such a file format with Python, it must use the ASCII code. A corresponding format is the .ob j . This is open and can
be used without legal restrictions.4

A polygon consists of edges and vertices that form its area. We name the edges and the surface and enter them in
lists that store the data for all polygons. We interpret the vertices as position vectors. We store these as an array using
the Numpy module. We prefer this method to simple tuples because it allows us to later access certain arithmetic
operations of the module.
At this point we are able to manipulate the entire body. It is important, for example, to change its orientation in space
in order to be able to carry out flows from certain directions later. Once we have made all the necessary adjustments,
we need to convert the geometric body into a boolean body. We will go into this step in the following chapter.

3.2.3 Conversion of geometric solids to boolean solids

In the Boolean definition5 the space is divided into discrete cells which contain the information as to whether they
are part of the body. With the division of space into cells, however, it also loses its volume and extent. So the cell
size for this data is crucial. A cell thus possesses, so to speak, the information about its extension and position in
conventional, Cartesian space. Now, to give it the crucial information that defines it as part of the body, we need to
verify that the cell is part of the original body. We do that by determining whether its center is within the body volume.

4More information on the .ob j file format can be found in the appendix.
5Pictures of converted Boolean bodies can be found on page 24 in the appendix.

11

So we need a function that calculates whether any point within the Cartesian
coordinate system is an element of the volume of a polygon composite.
In two-dimensional space there is the so-called beam method.[24] With this
method, a ray is defined from the test point. If this ray enters this polygon by
crossing an edge of a polygon, it must leave it again by crossing another edge.
In the case of concave polygons, the ray can enter the body several times and
thus also leave it again several times. The number of times the ray intersects
edges of the polygon can be used to determine whether the test point is inside
or outside the polygon. An odd number of intersection points means that the
ray must have started in the polygon. The test point is therefore within the area
of the polygon. No intersection or an even number of intersections means the
test point is outside the polygon.
In Figure 11, point H is tested. The ray emanating from it crosses three edges of
the polygon: c, e, and f. H lies inside the face.

Figure 11: Representation of the
ray method for the test point H [61]

We transferred this method to three-dimensional space. For this we define the ray emanating from the test point
as a straight line. We replace the individual polygons of the composite with levels. So we determine the number of
intersection points of the straight lines with the planes. The following positional relationships can occur between a
straight line and a plane:

1. The line and the plane are truly parallel, there is an intersection at infinity.

2. The line is a subset of the plane, there are infinitely many intersection points.

3. The line intersects the plane at exactly one point.

In the first case there is no definable point of intersection. In cases 2. and 3., however, we must use the two-
dimensional space method to determine whether the intersection point is inside or outside the polygon representing
the plane. The test point itself is used for 2., while for 3. the intersection of the straight line and the plane must first be
calculated. For this we use the Gauss algorithm6. It is also important that the point of intersection lies in the positive
direction of the straight line, so that we can view it as a ray. Again, if the number of intersections is even or no inter-
section, the test point is inside the body and if the number of intersections is odd, it’s outside.
When using this method or methods, we must be aware that intersections with multiple edges or polygons can occur
simultaneously at corner points. We must eliminate these multiple increases. In these specific cases, rounding errors
also occur, which makes the filtering process more difficult, since there are different intersections at a corner point
that differ in decimal places.
Now we can check the centers of all cells for their position in relation to the polygon blend. A Boolean matrix is then
created that replaces the geometric body. A cell of the matrix reflects a cell of the previous room. We can now carry
out simulations on the resulting Boolean body using the Lattice-Boltzmann method.

3.2.4 Direct import of boolean bodies

In 3D editing programs there is a function that converts the created polygon composite into alternative shapes. One
of these forms is the conversion to a cubic lattice. This cube lattice is basically a new polygon composite. However,
we can take advantage of this special bond. The cubes already represent a division of space into cells. Bodies of this
shape can be exported again as .ob j and read out using an alternative function. This does not create lists of edges and
faces or position vectors, but immediately the boolean matrix.
In doing so, we treat each vertex of a cube that makes up the body as the center of a cell, since we already know
that they are in the body. The disadvantage of this method is that the dicing created by the 3D editing program is
supplemented by a layer of cubes in each direction at the edge of the body. Furthermore, the orientation of the body
in space cannot be changed afterwards. Each new flow direction therefore requires the import of a newly adapted and
modified body.

3.2.5 Graphic representation of bodies

We use the Tkinter module for the graphical user interface of our simulation program. This provides a variety of
widgets and can be connected to the Matplotlib module. The latter is used to visualize a wide variety of data with
Python and is designed for scientific work. The graphs created with Matplotlib can be embedded in a Tkinter window.
In the program we consider two different types of bodies. On the one hand we deal with geometric bodies consisting
of vertices, edges and faces and on the other boolean bodies. The body types require different representations. We
visualize geometric bodies using polygon collections and a wireframe, i.e. using their surfaces and their edge grid.

6A structogram of the Gauss algorithm can be found in the appendix.

12

The surfaces are also given a transparency effect. Matplotlib provides a 3D projection for this.7 A boolean body can
be viewed in 2D as an image made up of black and white pixels. In 3D, the pixels are no longer squares but cubes.
Matplotlib offers the so-called voxel plot for this purpose. In order to minimize the display volume, we place layers in
the room that display 2D sections of the body as an image.

3.3 Basic structure of the simulation program

The program structure is based on the front end, the graphical user interface. The backend, all calculation and sim-
ulation functions, are therefore associated with an object on the graphical user interface. The basic building block of
the program is the pr og r ami nter f ace() class. This inherits from the T k() class of the T ki nter module we use. Here
the graphical interface

1. The entry of a body.

2. Making specific settings.

3. Running a flow simulation based on the settings.

4. Evaluating the project.

According to the explanation above, all four core functions are based on the graphical user interface. Conversely,
this means that they each get their own F r ame() object. So they are all implemented as an object that inherits from
F r ame() . In this way, your graphical frontend can be initialized and, at the same time, the required functions are
implemented as methods of the object that form the associated backend. Since it makes sense to us that functions
two and three can be performed multiple times on a body, they are subordinated to another object. We also have
objects that serve as information or help windows. Another, separate object is also made for the body processed in
a project. This stores body-specific attributes, such as the coordinates of the corner points and information about
edges and surfaces. It also has methods that can edit these attributes or derive additional attributes from them. In
the program there is therefore a constant change between methods of the graphical user interface and methods of the
body object. So when we implement the program, we determine which object a function belongs to. For example, if
it edits the vertices of the body, it is a method of the body object and must also be implemented there. However, if a
function is to give feedback when a button is pressed on the program interface, it belongs to the respective interface
object. This is also the case if the only purpose of this method is to call a function of the body object.
The user thus first gets to the program interface. Here he can start a new project and thus get to the input window of
the project. There he can enter the body and continue to the simulation window. A new simulation is created in this
window, in which the user first makes all the necessary settings on the settings frame. Once this has been done, he
can carry out a simulation on the simulation frame. Now the user can start further simulations with new settings or
evaluate the project. Finally, all data collected in the simulations are evaluated in the evaluation window.
Furthermore, we have created a database in which projects can be saved 8. We have implemented functions that apply
to mathematical problems in a separate document, since they are not methods of the body and must be called from
several interfaces.

4 Application of our simulation program

4.1 The connection between theory and reality

We can now state that we have created a realistic flow simulation of particles around bodies. However, the actual
goal of the seminar work, the calculation of the Cw values of the bodies in the flow, has not yet been dealt with in
more detail. In general, the Cw value is a variable value depending on the Reynolds number. The Reynolds number
is a dimensionless number named after the physicist Oswald Reynold and indicates the ratio of inertial and viscous
forces in a flow. (37)[13]

7In a previous version of our program, we projected geometric bodies onto a two-dimensional plane. The corresponding conversion of the
coordinates can be found in the appendix.

8The structure of the database can be seen in the appendix.

13

Re = ρ · v ·d

µ
= v ·d

ν
(37)

The dependence of the Cw value on the
Reynolds number is illustrated in Figure 12.
It becomes clear that the Cw value can vary
greatly with the Reynolds number. It only
levels off at a constant value at a Reynolds
number between 1000 and 100,000.

Figure 12: Cw value of a sphere depending on the Reynolds num-
ber [62]

This is the area in which the drag coefficients of bodies are calculated in wind tunnels today.
For these Reynolds numbers, the Cw values of common bodies have already been measured and are generally ac-
cepted. The sphere has a drag coefficient of 0.47, the cube 1.05 and the disc 1.1.
In order to be able to classify our results of the later Cw value calculation, we have to make sure that our simulations
work with Reynolds numbers in the mentioned range.
In general, the Reynolds number is defined by the formula shown above and can be calculated in practice. However,
we have no units in our simulation and can only calculate ratios from the viscosity and speed, which can be varied
in the program. Other approaches must therefore be chosen to determine the Reynolds numbers used. On the one
hand, we have made use of the fact that laminar and turbulent flows are distinguished by a critical Reynolds num-
ber. This critical Reynolds number varies depending on the body and flow space. As an approximation, the critical
Reynolds number can be set at around 2500. So we have calculated a theoretical Reynolds number from the relation-
ship between viscosity and velocity in the program, neglecting the characteristic length d . Ultimately, we were able
to determine the critical Reynolds number to the theoretical Reynolds number of 18 that we calculated. Accordingly,
with a theoretical Reynolds number of 18, which in reality corresponds to a Reynolds number of 2500, we would be
between the desired range of 1000 to 100,000.

This ratio would be suitable for calculating the drag coeffi-
cient.
In order to check this result, we calculated the Cw value
of a sphere depending on several theoretical Reynolds
numbers. This resulted in the graph in Figure 13, which is
almost identical to the graphs of a cube and a conea.

If one compares the diagram from Figure 13 with the
diagram from Figure 12, the section can be classified
almost identically in the real Reynolds number range from
1000 to 5000. In the diagram (Figure 13), the theoretical
Reynolds number of 20 corresponds to the real Reynolds
number of 2500 and the result of the critical Reynolds
number is confirmed.

aThe corresponding graphs can be found in the appendix on page 24.

Figure 13: Cw value of a sphere depending on the
Reynolds number [61]

4.2 Optimization of the Cw value calculation

A diagram with the calculation results of the Cw value is already shown above. How exactly this calculation works is
explained below. The Cw value is generally defined by the formula (38): [19]

cW = FW

q · A
= 2 ·FW

ρ · v2 · A
(38)

In our simulation, we calculate the force F, which acts on the body in the direction of flow, by summing up all the
directional arrows from the surrounding grid cells of the body in the direction of flow. We used the D3Q19 Lattice
Boltzmann model. Density is determined by summing all the directional arrows of each cell in the entire space and
dividing it by the number of cells in the space minus those in the body. Furthermore, the area is determined by the
number of cubes directly flown by the body and the speed can be set in the program. This allows all the variables
required for a correct Cw value calculation to be accessed using the formula mentioned above.
Then you can calculate the theoretical Cw value for each body, compare the result with the values from reality and
adjust the theoretical results by a general factor a so that they are as close as possible to the real Cw values. Before
doing this, however, it must be checked that all Cw value calculations are carried out with the various bodies under
the same conditions. This is the only way to define a general factor a that applies to all theoretical results. To ensure

14

this, the Reynolds number must be the same for each simulation. On the one hand, we guarantee this by keeping the
relationship between viscosity and speed constant in the program. On the other hand, while determining the critical
Reynolds number, we also had to realize that the Reynolds number and thus the Cw value depend, among other
things, on the scaling and the positioning of the body in space. This relationship can be explained by the dependence
of the Reynolds number on the characteristic length d of the body.

Because the greater the length of the space in the direction
of flow, the smaller the critical Reynolds number. The
Reynolds number levels off at a constant value from a
spatial length behind the body and in the direction of flow
that corresponds to six times the three-dimensional max-
imum extent of the body. The critical Reynolds number
already mentioned above was determined with a factor of
6. The relationship mentioned is illustrated again in Figure
14. The maximum extent is described by the distance be-
tween the minimum and maximum X, Y and Z coordinates.

Figure 14: Dependence of the critical Reynolds number
on the maximum extent of space [61]

Accordingly, we use a factor of the maximum expansion of 6 for each body in the program, because this means that
the Reynolds number always remains almost constant, even with different body shapes.
In order to make the Cw value calculation less error-prone, we have shortened the formula for the Cw value to cW = F

A .
Because the adjustable Reynolds number with the viscosity and speed remains the same for every calculation. For
the density, too, we have proven through calculation results between different bodies that it is independent of the
body and only deviates by an average of 0.4% from the mean. The slight deviation can be attributed to an inaccurate
calculation of the volume of the bodies. With the exception of the area A and the force F , all variables of the drag
coefficient formula are constant and are omitted. Since turbulence occurs in the flow simulation with higher Reynolds
numbers, which causes the Cw value to fluctuate almost periodically depending on the flow step, we calculate the
resulting Cw value from the average of the Cw value between flow step 1000 and 1400. The fluctuations are in Figure
22 shown on page 25 in the appendix. To determine which Reynolds number gives the best Cw value results, we
performed calculations using various theoretical Reynolds numbers and twelve simple bodies whose Cw values can
be found in the literature. With our program we can cover theoretical Reynolds numbers between 5 and 50, which in
reality reflect Reynolds numbers between 700 and 7000. We created various diagrams with drag coefficients. It turned
out that the general factor a between the theoretically calculated drag value and the real drag value of a body is not
constant, but represents a linear function. (compare figure 15)

Figure 15: Factor a depending on the calculated drag
value [61]

We found the smallest deviation from the factor a to the
straight line at a cube accuracy of 14 with a theoretical
Reynolds number of 13. With a cube accuracy of 20, the
minimum deviation was at a theoretical Reynolds num-
ber of 9 after more than 70 hours of calculation. With
larger Reynolds numbers we exceed the limit of the criti-
cal Reynolds number 18 and the turbulence increases. As
a result, the fluctuations in the Cw values between the
individual flow steps also increase and the Cw value re-
sults become inaccurate. In the case of smaller theoreti-
cal Reynolds numbers, inaccurate Cw values occur, since
one no longer calculates in the Reynolds number range be-
tween 1000 and 100,000 and the Cw value results therefore
no longer represent the Cw values already measured in the
literature.

4.3 Results of the drag coefficient calculation

4.3.1 Results for simple bodies

After we had optimized the Cw value calculation as best as possible, we calculated the Cw values of 12 simple bodies
with different cube accuracies. With an accuracy of 14 dice, we were able to achieve an average deviation of 4.4 %,
which is illustrated again in Table 3. [16, 17, 12, 32]

15

Body calculated Cw value real Cw value

Cone 0.344 0.340
Hollow sphere 0.411 0.380
Hemisphere 0.426 0.420
Sphere 0.443 0.470
Cube (rotated 45 degrees) 0.773 0.800
Cylinder 0.905 0.910
Hemisphere (opposite) 1.058 1.170
Cube 1.108 1.050
Disc 1.149 1.100
Cone (opposite) 1.164 1.140

Table 3: Calculated Cw values in comparison
with values from the literature [61, 16, 17, 12,
32]

With a dice accuracy of 20, the average deviation is 5.1%. In the calculations, the simple bodies were each flown
centrally from the front. In order to show the dependency of the angle of attack on the Cw value of the body, we have
created an illustration of the Cw value of a cube and a hemisphere depending on the angle of attack in Figures 23 and
24 in the appendix. It is striking that the theoretically calculated Cw values are highly error-prone for extremely large
and small values. In real terms, a streamlined body has a drag coefficient of 0.04. Our program, on the other hand,
calculates a Cw value of 0.6, which is greater than the Cw value of a sphere. This is where the simulation reaches its
limits, which are explained in more detail in the error analysis. We also find a similar limit with extremely large drag
coefficients, such as that of a semi-hollow sphere oriented against the flow. This is normally 1.4. Our simulation, on
the other hand, calculates a value of 0.9.

4.3.2 Lamborghini results and scanned body

Since the beginning of our work, we have made it our main task to calculate the drag coefficient of a Lamborghini.
We obtained the Lamborghini’s .ob j file from the Internet free of charge. Using Blender, we edited the file so that our
program can dice it. Unfortunately, we were not able to record any representative results in the Lamborghini’s Cw
value calculation compared to the real value of 0.33. We explain this by saying that the Lamborghini has a small inflow
area compared to the entire surface of the body. However, we will go into more detail about this in the error analysis.
In order not to completely ignore our Lamborghini, we also compared the flow pattern calculated by our software with
the flow pattern of a Lamborghini from the wind tunnel. The two flow images look almost identical and speak for the
underlying simulated flow. The comparison is shown in Figure 27 in the appendix.
So that we can also calculate other and, above all, more complex bodies, we have procured a 3D scanner compatible
with Apple tablets from the student research center in Erfurt. This scans the bodies we want and converts them into
compatible .ob j files. The .ob j files can then be aligned in the flow direction using the Blender graphics software and,
if necessary, corrected for defective parts. It should be noted that the 3D scanner is hardly subject to any restrictions.
Both large objects such as cupboards and tables and small objects such as a pencil case or computer mouse can be
scanned. Our program can then calculate the drag coefficient. However, this time there is no real comparison value
available from the literature, because we used bodies such as a nutcracker or a cup, among other things. These have
not previously been measured in a wind tunnel. That’s why we used the wind tunnel in the student research center to
carry out our own Cw value measurements with the scanned bodies.
In order to be able to classify our measurements later, we first determined the Reynolds number used in the wind
tunnel. Depending on the size of the body, we were able to determine an average range between 20,000 and 50,000.
This is also in the range of the Reynolds numbers with a constant Cw value and the measurements from the wind
tunnel can be compared directly with our theoretical calculations. We have briefly summarized the results in Table 4
in the appendix on page 30. There we continued to explain our measurements, how the wind tunnel works and the
accuracy of the results more explicitly.
For the complex bodies, we can record an average deviation from the measured Cw value of 11.4%. It should be noted
here that the wind tunnel has an average error rate of 15%. Based on the deviations of simple bodies, our software
works with 5% more precisely than the wind tunnel. Accordingly, we can only check that the drag coefficient we
calculated is roughly in the range of the value measured in the wind tunnel, plus minus 20% deviation. This is fulfilled
for every calculated drag coefficient. We conclude that our software is also suitable for complex bodies, taking into
account the limitations in error analysis. With the wind tunnel it is also possible to visualize the flow pattern around
the body. We recorded this with several camera images for the bodies. We then compared the images with the images
from our own simulation of the respective body. The pairs of flow images of a body look almost identical, which is
illustrated in Figures 28 and 29 in the appendix. Together with the Lamborghini’s flow pattern, this underscores the
accuracy and realism of the simulation we developed.

16

4.4 Error analysis for the simulation method we developed

As has already become clear in the results for the simple bodies, our Cw value calculation reaches its limits with
extremely large and small Cw values. However, there were also gross errors in the Lamborghini’s drag coefficient. We
examined the causes of errors in other, self-created bodies and were able to identify two significant sources of error.
In the chapter Optimizing the Cw value calculation, we already mentioned that the Reynolds number and thus the
Cw value depend on the scaling of the body in the flow space. From a room length based on six times the maximum
extension of the body, the Reynolds number has leveled off at a constant level. However, for bodies that are very long
in one of the dimensional directions perpendicular to the direction of flow, this approximation no longer seems to
work. A square disc normally has a drag coefficient of 1.1. Our software calculates this as 1.15. However, if we stretch
the disk perpendicularly to the direction of flow Y, for example in the X direction, we already have a Cw value that is
twice as large with a ratio of three between the X length and the Z length of the body. This relationship is illustrated
again in Figure 26 in the appendix. The second source of error arises from the relationship between the inflow area
and the total surface area of the body. When determining the force acting on the body, we determine the difference of
the five directional arrows acting on the body in the X direction by default. The central arrow in the X-direction can
only act on the inflow surface. However, the four oblique arrows in the X-direction can act on a body surface parallel to
the direction of flow. If the total area of the body is larger, but the inflow area remains constant, more oblique arrows
can affect the body. The final sum of the forces acting on the body is thus greater, although the inflow area remains
constant. Ultimately, this process results in an increased drag coefficient. We tried to calculate the force only by the
central force in the X-direction, but these results were even less representative. To show this connection, we used a
disk and continuously extended it in the Y direction. The course of the Cw value is shown graphically in figure 25 in
the appendix. The drag coefficient of a cube is normally 1.05. If you lengthen it by a factor of 3.3 in the Y-direction, so
that the ratio of the inflow area to the surface is 15, the Cw value calculated by our program is almost twice as much.
Ultimately, this also explains the Cw value of the Lamborghini and the flow body, which was incorrectly calculated by
our program. The Lamborghini has a ratio between the faces of 16 and the ratio between the X and Z dimensions of
the body is 1.6. However, for the program to calculate the correct Cw value, based on the two charts, the area ratio
should not be greater than 11 and the ratio between X and Z dimensions should not be greater than 1.8.

4.5 Result classification

In conclusion and in summary, we are satisfied with our results. With our program we have developed a realistic and
clear flow simulation for bodies, with which the flow behavior of a body can be examined in a user-friendly manner.
Our animation of the flowing fluids is in no way inferior to the flow images in the wind tunnel. On the contrary, it is
even more descriptive and informative since it includes multiple perspectives and different forms of representation.
In the wind tunnel, the depiction of flow is limited to a few colored flow stripes that run around the body. Furthermore,
we can achieve extremely precise calculation results, which have an error rate of only 5% in the range of Cw values
between 0.25 and 1.2. Inaccuracies occur outside of this range. The software should not be used directly here. The
conditions mentioned in Chapter 4.4 must be taken into account. Our software cannot yet completely replace the
wind tunnel.
Furthermore, our software is practical. With a 3D scanner you can simply scan in the desired objects, align them with
Blender and have our software calculate the drag coefficient. If the objects do not exist physically but only on the
computer in .ob j format, they can still be imported. Ultimately, using our software is a lot more efficient than using a
wind tunnel. On the one hand, our software is more accurate in this area than the wind tunnel we tested at the student
research center, which is one of the highest-quality wind tunnels that is privately available. On the other hand, it is
also more time-saving, because scanning and calculating the Cw value takes a maximum of 30 minutes. Based on
experience, scanning the body and aligning it with Blender takes an average of 5 to 10 minutes. For the calculation
of the Cw value, around 7 minutes are to be planned for a cube accuracy of 14 and around 20 minutes for a cube
accuracy of 20. Finding a wind tunnel that is the right size and with the desired level of accuracy can take days and can
quickly cost hundreds of thousands. So we have developed a complete solution that anyone can use to determine the
drag coefficient of a body easily, quickly and with little effort. Due to the flexibility of the 3D scanner, both large and
small objects can be calculated that would not fit in the wind tunnel or are too small for it. This makes our complete
solution suitable for almost everyone, from simple hobbyists at home to physics teachers in class.

17

5 Reflection on our work

The aim of our work was to develop software for the flow simulation of fluids around bodies, which enables the Cw
value of defined bodies to be calculated. We asked ourselves how representative the theoretical results are and to
what extent it is still necessary today to use a wind tunnel to calculate the drag coefficient.
We dealt with the basics of fluid mechanics, especially the Navier-Stokes equation, and went into mathematical
models and their components and operations. Based on the Boltzmann equation and the Lattice-Boltzmann method,
we have created a program for flow simulation in two-dimensional and three-dimensional space. For this we imple-
mented methods for reading and dicing of bodies, which allow us to work with official file formats. With the help of
this program complex and an extensive GUI9, fluid-mechanical data of a flow can be collected, based on which we
can approximate the flow resistance coefficient of a body. It is also possible to understand the flow through diagrams
and animations. Based on several bodies for which the Cw value has already been measured and is recognized, we
have optimized the Cw value calculation and were ultimately able to achieve an average deviation from the real values
of around 5%. We then applied our calculations to scanned bodies and compared them with the wind tunnel. We
were able to show that our simulation achieves better results than the wind tunnel, but we also explained where our
simulation reaches its limits.

In summary, we can say that we have achieved our goals and that we are very satisfied with the results of our
work. We gained a deep insight into the field of fluid dynamics and multiplied our program development skills. The
working atmosphere in our group was always constructive and motivating. We have consistently adhered to our
schedule and hereby conclude our seminar paper.

9Graphical User Interface

18

6 Appendix

Trajectory of a volume element for the funnel flow example

Here we set up the path equation of a volume element for the funnel flow. The trajectory of the element runs parallel
to the velocity field. This results in the following relationship for (ϱ0,ϕ0, z0) in the cylindrical coordinate system (39): ϱ−ϱ0

ϕ−ϕ0

z − z0

= t ·
 ϱ1 −ϱ0

0
z1 − z0

 (39)

(ϱ0,ϕ0, z0) is at the bottom of the funnel and (ϱ1,ϕ1, z1) is the the starting point of the trajectory at the top of the
funnel. For these sizes, the following ratio (40) applies:

ϱ1

ϱ0
= h

H
(40)

In order for the path to run on a vertical plane, ((41) and (42)) must also apply:

ϕ1 =ϕ0 (41)

ϕ=ϕ0 (42)

If you write out the first equation, you get 6 equations that describe the path of a volume element through the point
(ϱ0,ϕ0, z0).

Projection of three-dimensional coordinates in two dimensions

The projection of three-dimensional bodies onto a two-dimensional surface was part of our program before we de-
cided to use M at pl otl i b as a display module. There are many different methods for this process, which we will not
go into further here. It was important for us that the projection was efficient in terms of runtime. So the easiest way
would be to set all z-coordinates to zero, for example. This can be achieved by overriding the Z coordinates. However,
this solution is not particularly elegant. A better way is to multiply a matrix by the point. This matrix can be adjusted
using variables and can therefore also be used to automatically zoom the projected points. By multiplying them by a
factor, their distance from each other can be changed. In addition, the projection is not limited to the XY plane alone.
For example, to represent a three-dimensional point on the YZ plane, the calculation would look like this (43):

(
0 1 0
0 0 1

)
·
X

Y
Z

=
(
0+Y +0
0+0+Z

)
=

(
Y
Z

)
(43)

19

Structure of Wavefront 3D object files

1 # Blender v2 .79 (sub 0) OBJ File: ’’
www. blender .org

3 mtllib Cube_fine .mtl
o Cube_Cube .001

5 v -4.197928 -2.718778 5.815319
v -4.197928 7.281222 5.815319

7 v -4.197928 -2.718778 -4.184681
v -4.197928 7.281222 -4.184681

9 v 5.802072 -2.718778 5.815319
v 5.802072 7.281222 5.815319

11 v 5.802072 -2.718778 -4.184681
v 5.802072 7.281222 -4.184681

13 vn -1.0000 0.0000 0.0000
vn 0.0000 0.0000 -1.0000

15 vn 1.0000 0.0000 0.0000
vn 0.0000 0.0000 1.0000

17 vn 0.0000 -1.0000 0.0000
vn 0.0000 1.0000 0.0000

19 usemtl None
s off

21 f 1//1 2//1 4//1 3//1
f 3//2 4//2 8//2 7//2

23 f 7//3 8//3 6//3 5//3
f 5//4 6//4 2//4 1//4

25 f 3//5 7//5 5//5 1//5
f 8//6 4//6 2//6 6//6

Above you can see the .ob j document of a cube. On the
right are the lists for the data of the polygon compound as
we use them in our program. The first list contains the indi-
vidual vertices of the body. Each vertex is stored by a name
and its location vector. We store the position vector as an
array object of the Numpy module. The second list con-
tains the edges and the third list contains the faces of the
body. Also they are stored by a name. It also includes a list
of the names of the vertices they define.

[[’P0 ’, array ([[0.] ,
2 [0.] ,

[10.]])] ,
4 [’P1 ’, array ([[0.] ,

[10.] ,
6 [10.]])] ,

[’P2 ’, array ([[0.] ,
8 [0.] ,

[0.]])] ,
10 [’P3 ’, array ([[0.] ,

[10.] ,
12 [0.]])] ,

[’P4 ’, array ([[10.] ,
14 [0.] ,

[10.]])] ,
16 [’P5 ’, array ([[10.] ,

[10.] ,
18 [10.]])] ,

[’P6 ’, array ([[10.] ,
20 [0.] ,

[0.]])] ,
22 [’P7 ’, array ([[10.] ,

[10.] ,
24 [0.]])]]

[[’K0 ’, [’P2 ’, ’P0 ’]],
26 [’K1 ’, [’P0 ’, ’P1 ’]],

[’K2 ’, [’P1 ’, ’P3 ’]],
28 [’K3 ’, [’P3 ’, ’P2 ’]],

[’K4 ’, [’P6 ’, ’P2 ’]],
30 [’K5 ’, [’P3 ’, ’P7 ’]],

[’K6 ’, [’P7 ’, ’P6 ’]],
32 [’K7 ’, [’P4 ’, ’P6 ’]],

[’K8 ’, [’P7 ’, ’P5 ’]],
34 [’K9 ’, [’P5 ’, ’P4 ’]],

[’K10 ’, [’P0 ’, ’P4 ’]],
36 [’K11 ’, [’P5 ’, ’P1 ’]]]

[[’F0 ’, [’P0 ’, ’P1 ’, ’P3 ’, ’P2 ’]],
38 [’F1 ’, [’P2 ’, ’P3 ’, ’P7 ’, ’P6 ’]],

[’F2 ’, [’P6 ’, ’P7 ’, ’P5 ’, ’P4 ’]],
40 [’F3 ’, [’P4 ’, ’P5 ’, ’P1 ’, ’P0 ’]],

[’F4 ’, [’P2 ’, ’P6 ’, ’P4 ’, ’P0 ’]],
42 [’F5 ’, [’P7 ’, ’P3 ’, ’P1 ’, ’P5 ’]]]

Wavefront 3D object files are used to store geometric properties of objects. Objects can be individual bodies but also
body accumulations. The corner points and the surfaces of objects are saved. A normal is also specified for each
surface. The normal is known from vector calculation and points out of the object here. The information stored in
the .ob j file is read line by line. Lines storing vertex data are denoted by the letter v . The position vector for a point
is specified in a Cartesian coordinate system. Normals are marked by vn and the faces by f . A surface consists of at
least 3 points. Point numbers are given based on their order in the document. The normal of the surface is specified
for each point, also via its number. Point and normal number are separated by a double slash. Individual entries in a
line are separated by a space. In the document excerpt above, the eight vertices of a cube with edge length 10 and the
six normals and associated faces are stored.
However, there are other lines in the document that are irrelevant for our purposes. Lines one and two start with a
hashtag and are therefore comments. The fourth line starts with an o. After that is the name of the saved object. This
has nothing to do with the file name. It is useful when working with several objects at the same time in a 3D editing
program and thus serves the user-friendliness. After a g there would be the name of a group, i.e. body aggregation.
The letter s, found in the document in front of the faces, marks the smoothing of the object. In this case it is disabled.
For example, it plays a role in curved bodies when it comes to ’smoothing’ the surface approximated by polygons.
Finally, the .ob j file refers to a material library with the file extension .mtl . It is identified by mtll i b. After that is
the path to the file. However, in the example above, the noted file is marked as not needed by the line usemtl None .
Furthermore, textures of the body can be specified in the document, marked by the beginning of the line v t .
On the right in the document excerpt you can see the translation of the file for our program. We must note that we
start with zero when numbering the points, edges and faces. In addition, the coordinates of the corner points are
adjusted in such a way that the smallest coordinate per dimension is 0 in each case. This avoids calculating with
rounding-prone floating-point numbers, which in turn prevents rounding errors by the program. Finally, you can see
that the corner points of an area are already specified in the .ob j document. This allows us to determine the edges of
the body. Just make sure to avoid duplication.

20

Structure of the database for saving projects of our simulation program

A database can be implemented in Python using the sql i te3 module. Our database consists of two main tables and
associated side tables. The first main table is called I Ds and is used to store the IDs used in the database. With their
help we can create new IDs automatically and make sure that there is a unique mapping between the tables. We do
not use the names of the bodies for this, since duplication of names can occur at this point. Projects edited in the
program can now be saved in the second main table called Pr o j ect s. An entry consists of the created identification
ID, the name of the project and the body used and a path to the .ob j file of the body. The ID of the project is still used
as the name of the simulation table belonging to the project. All simulations that were carried out in the course of the
project are saved here. A simulation entry also receives an automatically generated ID. The simulation name and the
simulation settings are also part of the entry. Finally, the data collected in the simulation is missing. A measurement
table is created for them with the simulation ID as the name.
Since the last states of all simulations are to be visualized when a project is opened, the associated variables must also
be saved. These are the arrow density for each cell and the arrow direction sum per cell for each dimension. When
storing this data, we must keep in mind that it is a 3D matrix that must be entered into a two-dimensional table.
Thanks to the r eshape() function of the Numpy module, this can be reversibly converted into a one-dimensional
matrix. This can now be entered in a column of any length in the database table. The table created for this bears the
ID of the associated simulation as a name, just like the measured value table, but with an additional abbreviation.

Graphics and visualizations

Figure 16: Model of the explicit Euler method [26]

21

Figure 17: Presentation of the microscopic simulation method [61]

Figure 18: Structogram for the Gauss algorithm [61]

22

Figure 19: Conversion of a geometric body into a boolean body with our program [61]

Figure 20: Determined Cw value of a cube depending on the Reynolds number [61]

Figure 21: Determined Cw value of a cone depending on the Reynolds number [61]

23

Figure 22: Fluctuations in the Cw value depending on the simulation step for a disk in a flow [61]

Figure 23: Cw value of a hollow hemisphere depending on the angle of attack [61]

24

Figure 24: Cw value of a cube depending on the angle of attack [61]

Figure 25: Cw value depending on the inflow area to the surface of the body [61]

Figure 26: Cw value as a function of the ratio of X expansion to Z expansion of the body [61]

25

Figure 27: Comparison of our flow simulation around a Lamborghini with the flow visualization in a wind tunnel [61,
60]

Figure 28: Comparison of our flow simulation around a cup with the flow visualization in a wind tunnel [61]

26

Figure 29: Comparison of our flow simulation around a nutcracker with the flow visualization in a wind tunnel [61]

Figure 30: Dependence of the flow pattern on viscosity and flow velocity [61]

27

Classification of the mesoscopic approach

Figure 31: classification of the mesoscopic plane of observation between the microscopic and macroscopic plane of
observation [59]

The macroscopic viewing plane is often compared to what is visible to the naked eye. The microscopic level of obser-
vation, on the other hand, is in the size range of atoms and molecules, i.e. in the range between 1 and 100 nanometers.
The mesoscopic approach using the Lattice-Boltzmann method used represents the transition between the two levels.

The measurements in the wind tunnel

Figure 32: The wind tunnel in the student research center [61]

Figure 33: Data sheet for the wind tunnel in the
student research center [63]

In order to control our Cw value calculations from the scanned bodies, we measured the Cw values of these bodies
with the wind tunnel of the student research center. Based on its technical design, this is an open wind tunnel, also
known as the Eiffel Canal. The air is sucked in by 25 fans, which can be controlled via the control panel. The control
voltage of the fans and thus the speed of the air flow in the wind tunnel can be adjusted with the control panel. The
maximum speed is around 11.5 m/s with a control voltage of 2.5 V. The dependency of the speed on the control voltage
is shown in the diagram at the top right. The turbulence in the intake air is filtered out by a rectifier made of thin tubes
with a diameter of 12 mm and a depth of 50 mm. Ultimately, the air flows through a contraction path, reducing the
cross-section of the flow by 75% to 0.5 ·0.3 m. The beam outlet finally hits the body, which is a sphere in the picture
above left.
In order to measure the force acting on the body, it is hung on several threads from a suspension device above the
wind tunnel. Another thread is behind the body and is transmitted to a force gauge via a pulley. The dynamometer
measures the force acting on the body in the direction of flow and transfers the data to a laptop via USB cable. There,
in turn, the data can be evaluated graphically with the Cassy-Lab 2 program. In order to determine the air resistance

28

force acting on the body for the Cw value measurement, the body is hung on the dynamometer once without a coun-
terflow and then again with a counterflow. The force measured at the force sensor is reduced by the countercurrent.
The difference between the two measured forces gives the drag force. We have measured drag forces from bodies at
multiple speeds ranging from 3.6 to 11.5 m/s. Ultimately, we used the measurements between 6.4 and 8.8 m/s for the
Cw value calculation, since the force measurement was inaccurate at lower speeds and the body swayed around too
much at higher speeds. In order to calculate the Cw value from the force measurements for the respective body, in
addition to the measured drag force, the inflow area, the speed and the density of the air are missing. As shown above,
the speed can be determined from the control voltage. We determined the inflow area approximately with a caliper
gauge. We calculated the density of the air at a room temperature of 20 degrees Celsius using the thermal equation of
state for ideal gases to be 1,204 kg/m³.
In order to be able to classify our drag coefficient measurements, we determined the Reynolds number used in the
wind tunnel. These were determined using the formula of viscosity, speed, density and the characteristic length al-
ready mentioned above. The average length of the body perpendicular to the direction of flow is used as the character-
istic length. The dynamic viscosity of air is 18 ·10−6Pa · s. All Reynolds numbers are in the range of Reynolds numbers
with a constant Cw value, based on the course of the Cw value as a function of the Reynolds number of a sphere. With
the approximation that the Cw value curve is the same for the other measured bodies, the measurements from the
wind tunnel can be directly compared with our theoretical calculations. We have briefly summarized the results in the
table below.
Based on the first four measured bodies in the table, we have an average deviation of 11.4% from the Cw value that we
calculated with our program and the Cw value that was measured in the wind tunnel. The last two values in the table
have larger deviations and are therefore not representative.

Table 4: Calculated drag values compared to measured values

Body calculated Cw value measured Cw value (wind tunnel) Reynolds number with v = 7.6 m
s

Cup 0.47 0.41 44424
Nutcracker 0.69 0.67 29871
Pencil case 0.53 0.45 47743
Bullet 0.46 0.52 38297
Hair gel tube 0.92 0.70 24511
Lunch box 1.11 0.50 37276

The drag coefficient calculated by our software for these bodies is in the right range based on experience with similar
bodies. However, the measurements in the wind tunnel deviate greatly from this, although we have repeated them
several times. We have included the two values in the table because we want to show that errors can also quickly
occur in the wind tunnel. On the one hand, we used a sphere to calibrate the wind tunnel. We measured a drag
coefficient of 0.52. In reality, however, the drag coefficient of the ball is 0.47. This is a deviation of almost 10% and can
be equated to the standard error of the wind tunnel. This standard error has also been proven for other bodies, such
as a disk. However, other random errors also occur. Light bodies or strongly asymmetrical bodies begin to oscillate
quickly in the suspension at higher speeds. Furthermore, the force transmission of the air resistance through a thread
to the dynamometer is not exactly vertical and the bodies only hang approximately parallel to the flow direction of the
wind tunnel. For example, if a pane hangs only slightly at an angle to the direction of flow in the wind tunnel, the drag
coefficient drops significantly. When considering the deviation between the measured and calculated Cw values, it
must also be mentioned that the shape of the bodies in the program only approximately corresponds to the shape in
reality due to the scanning and dicing. This becomes clear in Figures 27 to 29. In summary, we can assume an average
error of between 10 and 15% for measurements in the wind tunnel.
In addition to the Cw value measurement, we were also able to generate a flow pattern around the body in the wind
tunnel. For this we used a wire with twisted turns, which hangs between the body and the wind tunnel. We dripped
a glycerin solution onto these coils. The wire was then connected to a voltage source and heated until the glycerine
evaporated and a flow pattern based on several strips was made possible. This process can be seen in Figures 27, 28
and 29.

29

Bibliography

Literature sources

[1] ARNOLD, KARIN; DIETRICH, VOLKMAR; EBERLE ANDREAS; GRIMMER, ANDREAS; JENCKEL, ASTRID; GRIMMER, ANJA;
KARHOS, MARIANNE; LABAHN, BETTINA; LÜTTGENS, UWE; MALZ, RALF; PETERS, JÖRN; SCHÄFER, STEFFEN; TE-
ICHERT, BORIS; TISCHENDORF, KERSTIN; Chemie Oberstufe; Cornelsen Verlag; 2015 1. Auflage 4. Druck

[2] KUCHLING, HORST; Taschenbuch der Physik; Fachbuchverlag Leipzig im im Carl Hanser Verlag; 2011 20.Auflage

[3] MESCHEDE, DIETER; Gerthsen Physik; Springer-Verlag; 2002 21.Auflage

Web sources

[3D Grafics]

[4] Autoren Kollektiv um: 129.132.239.8; STL-Schnittstelle
https://de.wikipedia.org/wiki/STL-Schnittstelle

[5] Autoren Kollektiv um: Arilou; Dateiformat
https://de.wikipedia.org/wiki/Dateiformat

[6] Autoren Kollektiv um: Cavasin, Christian; Wavefront OBJ
https://de.wikipedia.org/wiki/Wavefront_OBJ

[7] Autoren Kollektiv um: Coumans, Erwin; FBX
https://en.wikipedia.org/wiki/FBX

[8] Autoren Kollektiv um: Moskopp, Nils; Offenes Format
https://de.wikipedia.org/wiki/Offenes_Format

[9] Autoren Kollektiv um: Vierge, Marie; Rendern (Design)
https://de.wikipedia.org/wiki/Rendern_(Design)

[10] Wavefront Technologies; .OBJ Dateierweiterung
https://www.reviversoft.com/de/file-extensions/obj

[Lattice-Boltzmann]

[11] Autoren Kollektiv um; Abas, Aizat; Lattice Boltzmann Model of 3D Multiphase Flow in Artery Bifurcation
Aneurysm Problem
https://www.hindawi.com/journals/cmmm/2016/6143126/

[12] Crowl, Lindsay; The Lattice Boltzmann Method Computational Fluid Dynamics
https://www.math.utah.edu/~crowl/pres.pdf

[13] Autoren Kollektiv um: Debenben; Lattice-Boltzmann-Methode
https://de.wikipedia.org/wiki/Lattice-Boltzmann-Methode

[14] Fitzpatrick, Richard; The Maxwell distribution
http://farside.ph.utexas.edu/teaching/sm1/lectures/node72.html

[15] Autoren Kollektiv um: Harris, Stewart; Boltzmann equation
https://en.wikipedia.org/wiki/Boltzmann_equation

[16] Autoren Kollektiv um: Mandl, F.; Maxwell–Boltzmann distribution
https://en.wikipedia.org/wiki/MaxwellâĂŞBoltzmann_distribution

[17] Mattila, Keijo; Implementation Techniques for the Lattice Boltzmann Method
https://jyx.jyu.fi/bitstream/handle/123456789/24953/9789513939915.pdf?sequence=1

[18] Two Phase Flow and Heat Transfer; Lattice Boltzmann Method
https://www.youtube.com/watch?v=Cg-IRE19BEw

[19] Weber State University; Lattice-Boltzmann Fluid Dynamics
http://physics.weber.edu/schroeder/javacourse/LatticeBoltzmann.pdf

30

https://de.wikipedia.org/wiki/STL-Schnittstelle
https://de.wikipedia.org/wiki/Dateiformat
https://de.wikipedia.org/wiki/Wavefront_OBJ
https://en.wikipedia.org/wiki/FBX
https://de.wikipedia.org/wiki/Offenes_Format
https://de.wikipedia.org/wiki/Rendern_(Design)
https://www.reviversoft.com/de/file-extensions/obj
https://www.hindawi.com/journals/cmmm/2016/6143126/
https://www.math.utah.edu/~crowl/pres.pdf
https://de.wikipedia.org/wiki/Lattice-Boltzmann-Methode
http://farside.ph.utexas.edu/teaching/sm1/lectures/node72.html
https://en.wikipedia.org/wiki/Boltzmann_equation
https://en.wikipedia.org/wiki/Maxwell–Boltzmann_distribution
https://jyx.jyu.fi/bitstream/handle/123456789/24953/9789513939915.pdf?sequence=1
https://www.youtube.com/watch?v=Cg-IRE19BEw
http://physics.weber.edu/schroeder/javacourse/LatticeBoltzmann.pdf

[Mathematical basics]

[20] Autoren Kollektiv um: Alva2004; Divergenz mit Zylinder Koordinaten
https://de.wikipedia.org/wiki/Divergenz_eines_Vektorfeldes

[21] Arvo, James; Rotationsmatrix
https://en.wikipedia.org/wiki/Rotation_matrix

[22] Autorenkollektiv um: Franzl aus tirol; Drehmatrix
https://de.wikipedia.org/wiki/Drehmatrix

[23] Gräber, Peter-Wolfgang; Vektoralgebra
https://tu-dresden.de/bu/umwelt/hydro/iak/ressourcen/dateien/systemanalyse/studium/
folder-2009-01-29-lehre/systemanalyse/folder-2010-04-12-1173264546/wws-02.pdf?lang=de

[24] Autorenkollektiv um: Hagman; Punkt-in-Polygon-Test
https://de.wikipedia.org/wiki/Punkt-in-Polygon-Test_nach_Jordan

[25] Universität Stuttgart; Differentialoperatoren
http://vhm.mathematik.uni-stuttgart.de/Vorlesungen/Vektoranalysis/Folien_
Differentialoperatoren_in_Zylinderkoordinaten.pdf

[26] Autoren Kollektiv um: HerrHartmuth; explizite Euler-Verfahren
https://de.wikipedia.org/wiki/Explizites_Euler-Verfahren

[27] Weitz / HAW Hamburg; Gauß-Verfahren
https://www.youtube.com/watch?v=kfopPCDY1F0

[Physical basics]

[28] Autoren Kollektiv um: Alva2004; Navier-Stokes-Gleichungen
https://de.wikipedia.org/wiki/Navier-Stokes-Gleichungen

[29] Butkevich, Andrey; Schmiedel, Benjamin; Hydrodynamik - Euler- und Navier-Stokes-Gleichungen
https://www.thphys.uni-heidelberg.de/~mielke/Mechanik17-9d.pdf

[30] Autoren Kollektiv um: Bammel, Katja; Navier-Stokes-Gleichungen
https://www.spektrum.de/lexikon/physik/navier-stokes-gleichungen/10145

[31] Autoren Kollektiv um: Bauhofer, Prof. Dr. W.; Eulersche Gleichungen
https://www.spektrum.de/lexikon/physik/eulersche-gleichungen/4573

[32] Autoren Kollektiv um: Duesi; Reynolds-Zahl
https://de.wikipedia.org/wiki/Reynolds-Zahl

[33] Autoren Kollektiv um: Funkmich008; Torricelli Formel
https://de.wikipedia.org/wiki/Ausflussgeschwindigkeit

[34] Graber, Peter-Wolfgang; Torricelli Formel
https://tu-dresden.de/bu/umwelt/hydro/iak/ressourcen/dateien/systemanalyse/studium/
folder-2009-01-29-lehre/systemanalyse/folder-2010-04-12-1173264546/wws-02.pdf?lang=de

[35] LearnMechE; Description and Derivation of the Navier-Stokes Equations
https://www.youtube.com/watch?v=NjoMoH51UZc&list=PLebuRGYfFXg28n878rvd3lDGTqJfYvABN&
index=8&t=20s

[36] Numberphile; Navier-Stokes Equations
https://www.youtube.com/watch?v=ERBVFcutl3M&t=124s

[37] Autoren Kollektiv um: Svebert; ideale Flüssigkeit
https://de.wikipedia.org/wiki/Ideale_Fl$%$C3$%$BCssigkeit

[38] Uni Magdeburg; Körperumströmung - reibungsbehaftet
http://www.uni-magdeburg.de/isut/LSS/Lehre/Arbeitsheft/VII.pdf

[Python]

[39] Autorenkollektiv um: Holden, Steve; Python Einführung
https://wiki.python.org/moin/

31

https://de.wikipedia.org/wiki/Divergenz_eines_Vektorfeldes
https://en.wikipedia.org/wiki/Rotation_matrix
https://de.wikipedia.org/wiki/Drehmatrix
https://tu-dresden.de/bu/umwelt/hydro/iak/ressourcen/dateien/systemanalyse/studium/folder-2009-01-29-lehre/systemanalyse/folder-2010-04-12-1173264546/wws-02.pdf?lang=de
https://tu-dresden.de/bu/umwelt/hydro/iak/ressourcen/dateien/systemanalyse/studium/folder-2009-01-29-lehre/systemanalyse/folder-2010-04-12-1173264546/wws-02.pdf?lang=de
https://de.wikipedia.org/wiki/Punkt-in-Polygon-Test_nach_Jordan
http://vhm.mathematik.uni-stuttgart.de/Vorlesungen/Vektoranalysis/Folien_Differentialoperatoren_in_Zylinderkoordinaten.pdf
http://vhm.mathematik.uni-stuttgart.de/Vorlesungen/Vektoranalysis/Folien_Differentialoperatoren_in_Zylinderkoordinaten.pdf
https://de.wikipedia.org/wiki/Explizites_Euler-Verfahren
https://www.youtube.com/watch?v=kfopPCDY1F0
https://de.wikipedia.org/wiki/Navier-Stokes-Gleichungen
https://www.thphys.uni-heidelberg.de/~mielke/Mechanik17-9d.pdf
https://www.spektrum.de/lexikon/physik/navier-stokes-gleichungen/10145
https://www.spektrum.de/lexikon/physik/eulersche-gleichungen/4573
https://de.wikipedia.org/wiki/Reynolds-Zahl
https://de.wikipedia.org/wiki/Ausflussgeschwindigkeit
https://tu-dresden.de/bu/umwelt/hydro/iak/ressourcen/dateien/systemanalyse/studium/folder-2009-01-29-lehre/systemanalyse/folder-2010-04-12-1173264546/wws-02.pdf?lang=de
https://tu-dresden.de/bu/umwelt/hydro/iak/ressourcen/dateien/systemanalyse/studium/folder-2009-01-29-lehre/systemanalyse/folder-2010-04-12-1173264546/wws-02.pdf?lang=de
https://www.youtube.com/watch?v=NjoMoH51UZc&list=PLebuRGYfFXg28n878rvd3lDGTqJfYvABN&index=8&t=20s
https://www.youtube.com/watch?v=NjoMoH51UZc&list=PLebuRGYfFXg28n878rvd3lDGTqJfYvABN&index=8&t=20s
https://www.youtube.com/watch?v=ERBVFcutl3M&t=124s
https://de.wikipedia.org/wiki/Ideale_Fl$%$C3$%$BCssigkeit
http://www.uni-magdeburg.de/isut/LSS/Lehre/Arbeitsheft/VII.pdf
https://wiki.python.org/moin/

[40] Hunter, John; Matplotlib Einführung
https://matplotlib.org/

[41] Klein, Bernd; Python Einführung
https://www.python-kurs.eu/

[42] Koonce, Grayson; Multithreading
https://graysonkoonce.com/waiting-until-a-thread-is-ready-in-python/

[43] Lundh, Fredrik; Python Einführung
http://effbot.org/

[44] NumPy developers; NumPy Einführung
http://www.numpy.org/

[45] Petri, Ulrich & Gutmann, Horst; Python Einführung
https://pyformat.info/

[46] SciPy developers; SciPy Einführung
https://docs.scipy.org/

[47] sentdex; Python GUI
https://www.youtube.com/user/sentdex/

[48] Seppke, Benjamin; Bildverarbeitung Python
https://kogs-www.informatik.uni-hamburg.de/~neumann/BV-WS-2010/Uebungen/
bv-python-einfuehrung.pdf

[49] Shenk, Justin; 3D Würfel Darstellung
https://gist.github.com/JustinShenk/c407b02a4d5c19f89dfc87e9678dcc22

[50] Sherwood, Bruce; 3D-Animation Python
https://vpython.org/

[51] Stack Overflow developers; Stack Overflow
https://stackoverflow.com/

[Texmaker]

[52] Hammersley, John; Latex Templates
https://de.overleaf.com/latex/templates

[53] Safra; Latex Einführung
https://latex-kurs.blogspot.com/

[54] Stack Overflow developers; Latex Einführung
https://tex.stackexchange.com/

[55] Wipper, Joachim; Matrizen
https://mo.mathematik.uni-stuttgart.de/kurse/kurs44/seite26.html

Image sources

[56] https://upload.wikimedia.org/wikipedia/commons/c/cb/Lattice_boltzmann_3steps.svg

[57] http://physics.weber.edu/schroeder/javacourse/LatticeBoltzmann.pdf

[58] https://jyx.jyu.fi/bitstream/handle/123456789/24953/9789513939915.pdf?sequence=1 S.68

[59] https://youtu.be/qhr3pOaShjg

[60] https://imgr1.auto-motor-und-sport.de/Lamborghini-Aventador-LP-700-4-\
Seite-Windkanal-articleGalleryOverlay-9c21d659-615877.jpg

[61] Aus eigener Quelle

[62] https://upload.wikimedia.org/wikipedia/de/thumb/8/81/Kugel-Reynolds.png/
500px-Kugel-Reynolds.png

[63] Send, Johanna / Dr.Wolfgang; Anleitung zum Windkanal; Großer Windkanal ANIPROP GWK 1; Seite 11

32

https://matplotlib.org/
https://www.python-kurs.eu/
https://graysonkoonce.com/waiting-until-a-thread-is-ready-in-python/
http://effbot.org/
http://www.numpy.org/
https://pyformat.info/
https://docs.scipy.org/
https://www.youtube.com/user/sentdex/
https://kogs-www.informatik.uni-hamburg.de/~neumann/BV-WS-2010/Uebungen/bv-python-einfuehrung.pdf
https://kogs-www.informatik.uni-hamburg.de/~neumann/BV-WS-2010/Uebungen/bv-python-einfuehrung.pdf
https://gist.github.com/JustinShenk/c407b02a4d5c19f89dfc87e9678dcc22
https://vpython.org/
https://stackoverflow.com/
https://de.overleaf.com/latex/templates
https://latex-kurs.blogspot.com/
https://tex.stackexchange.com/
https://mo.mathematik.uni-stuttgart.de/kurse/kurs44/seite26.html
https://upload.wikimedia.org/wikipedia/commons/c/cb/Lattice_boltzmann_3steps.svg
http://physics.weber.edu/schroeder/javacourse/LatticeBoltzmann.pdf
https://jyx.jyu.fi/bitstream/handle/123456789/24953/9789513939915.pdf?sequence=1
https://youtu.be/qhr3pOaShjg
https://imgr1.auto-motor-und-sport.de/Lamborghini-Aventador-LP-700-4- \ Seite-Windkanal-articleGalleryOverlay-9c21d659-615877.jpg
https://imgr1.auto-motor-und-sport.de/Lamborghini-Aventador-LP-700-4- \ Seite-Windkanal-articleGalleryOverlay-9c21d659-615877.jpg
https://upload.wikimedia.org/wikipedia/de/thumb/8/81/Kugel-Reynolds.png/500px-Kugel-Reynolds.png
https://upload.wikimedia.org/wikipedia/de/thumb/8/81/Kugel-Reynolds.png/500px-Kugel-Reynolds.png

Affidavit

We hereby declare that we have completed this work independently and without outside help. We have marked as
such text passages that are literally or conceptually based on the work of third parties.

Authors signatures:

Adrian Kühn :

Frank Long :

Paul Marschall :

33

	Mathematical-physical consideration of fluids
	The physical principles of fluid dynamics
	On the linear approximation problem

	Microscopic approach to flow simulations
	Motivation and basic idea
	Implementation of a test program
	Evaluation of this simulation method

	Implementation of the computer program for simulating flowing fluids
	Procedure for program development
	Introduction to the Lattice-Boltzman method
	Implementation of the simulation method in 2D space
	Implementation of the simulation method in 3D space
	Optimization of the flow simulation by collision thermal

	Virtual bodies in the program
	Preview of handling bodies in the program
	Importing bodies and handling file formats
	Conversion of geometric solids to boolean solids
	Direct import of boolean bodies
	Graphic representation of bodies

	Basic structure of the simulation program

	Application of our simulation program
	The connection between theory and reality
	Optimization of the Cw value calculation
	Results of the drag coefficient calculation
	Results for simple bodies
	Lamborghini results and scanned body

	Error analysis for the simulation method we developed
	Result classification

	Reflection on our work
	Appendix

